Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126325DOI Listing

Publication Analysis

Top Keywords

pathogen detection
16
inductively coupled
8
coupled plasma
8
plasma mass
8
mass spectrometry
8
viruses bacteria
8
pathogen
4
detection inductively
4
spectrometry analysis
4
analysis nanoparticles
4

Similar Publications

Background: Lower respiratory tract infections (LRTIs) remain a leading cause of community-acquired and nosocomial infection in children and a common indication for antimicrobial use and intensive care admission. Determining the causative pathogen for LRTIs is difficult and traditional culture-based methods are labor- and time-intensive. Emerging molecular diagnostic tools may identify pathogens and detect antimicrobial resistance more quickly, to enable earlier targeted antimicrobial therapy.

View Article and Find Full Text PDF

SARS-CoV-2 Envelope (E) protein is critical in viral assembly, release, and virulence. E gene was considered highly conserved and evolving slowly. Pan-sarbecoviruses-conserved regions in the E gene have been used as targets for various RT-PCR assays to detect SARS-CoV-2.

View Article and Find Full Text PDF

Improper use of antibiotics has led to the development of antimicrobial resistance, or "superbugs," outpacing the discovery of new antibiotics. The lack of rapid, high-throughput screening methods is a major bottleneck in discovery novel antibiotics. Traditional methods consume significant amounts of samples, making it challenging to discover new antibiotics from limited natural product extracts.

View Article and Find Full Text PDF

Targeted plasma metabolomics reveals potential biomarkers of the elderly with mild cognitive impairment in Qingdao rural area.

Front Aging Neurosci

December 2024

Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China.

Introduction: Previous research has suggested a link between the onset of Alzheimer's disease (AD) and metabolic disorder; however, the findings have been inconsistent. To date, the majority of metabolomics studies have focused on AD, resulting in a relative paucity of research on early-stage conditions such as mild cognitive impairment (MCI) underexplored. In this study, we employed a comprehensive platform for the early screening of individuals with MCI using high-throughput targeted metabolomics.

View Article and Find Full Text PDF

The Ironwood tree () holds a significant ecological role in Guam where a decline in Ironwood trees was first documented in 2002. Studies have linked the Ironwood tree decline (IWTD) to bacteria from the complex and wetwood bacteria, specifically and . Presence of termites was first found to be associated with IWTD in 2010; however, the role of termites in IWTD is still not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!