It is an important thing to identify internal crack in seeds from normal seeds for evaluating the quality of rice seeds (Oryza sativa L.). In this study, non-destructive discrimination of internal crack in rice seeds using near infrared spectroscopy and chemometrics is proposed. Principal component analysis (PCA) was used to analyze the rice seeds spectra. Four supervised classification techniques(partial least squares discriminate analysis (PLS-DA), support vector machines (SVM), k-nearest neighbors (KNN) and random forest (RF)) with four different pre-processing techniques (standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative with Savitzky-Golay (SG) smoothing) were applied. The best results (Sn = 0.8824, Sp = 0.9429, Acc = 0.913) were achieved by PLS-DA with the raw spectral data. The performance of the best SVM model was inferior to that of PLS-DA, but superior to that of RF and KNN. Except for PLS-DA, four different preprocessing techniques were improved the performance of the developed models. The important variables for discriminating internal cracks in rice seeds were related to the amylose. Overall, the all results demonstrated the feasibility of non-destructive discrimination of internal crack for rice seeds (Oryza sativa L.) using near infrared spectroscopy and chemometrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!