Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116462 | DOI Listing |
Bioresour Technol
November 2024
College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:
Photosynthetic biohybrid systems (PBSs) composed of semiconductor-microbial hybrids provide a novel approach for converting light into chemical energy. However, comprehending the intricate interactions between materials and microbes that lead to PBSs with high apparent quantum yields (AQY) is challenging. Machine learning holds promise in predicting these interactions.
View Article and Find Full Text PDFBiosens Bioelectron
September 2024
State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China. Electronic address:
Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1).
View Article and Find Full Text PDFNature
March 2023
Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
Biological fluids, the most complex blends, have compositions that constantly vary and cannot be molecularly defined. Despite these uncertainties, proteins fluctuate, fold, function and evolve as programmed. We propose that in addition to the known monomeric sequence requirements, protein sequences encode multi-pair interactions at the segmental level to navigate random encounters; synthetic heteropolymers capable of emulating such interactions can replicate how proteins behave in biological fluids individually and collectively.
View Article and Find Full Text PDFAdv Biosyst
July 2019
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, and International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
The nucleolus is responsible for RNA transcription, processing, and ribosome assembly, the dysfunction of which is associated with a number of diseases. In this report, a new member of fluorescent protein nanovessels (FPNs), constructed using thioflavin-T (ThT) and bovine serum albumin (BSA) as building blocks, is described. As a popular amyloid specific dye, ThT is nonfluorescent by itself, while its fluorescence can be lighted up upon interacting with amyloid proteins.
View Article and Find Full Text PDFChembiochem
May 2018
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, International Joint Research Laboratory, of Nano-Micro Architecture Chemistry, Jilin University, Changchun, 130012, P. R. China.
Protein-polymer microcapsules have attracted much attention, due to their special features and potential in biological use. How to make the most of this type of bio-abiotic hybrid material is an intriguing question. Nevertheless, several unsatisfactory technical issues significantly limited the application of these materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!