Salmonella is an important foodborne pathogen. Given the ban on the use of antibiotics during the egg-laying period in China, finding safe and effective alternatives to antibiotics to reduce Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infections in chickens is essential for the prevention and control of this pathogen and the protection of human health. Numerous studies have shown that unsaturated fatty acids have a positive effect on intestinal inflammation and resistance to infection by intestinal pathogens. Here we investigated the protective effect of α-linolenic acid (ALA) against S. Typhimurium infection in chickens and further explored its mechanism of action. We added different proportions of ALA to the feed and observed the effect of ALA on S. Typhimurium colonization using metagenomic sequencing technology and physiological index measurements. The role of gut flora on S. Typhimurium colonization was subsequently verified by fecal microbiota transplantation (FMT). We found that ALA protects chickens from S. Typhimurium infection by reducing intestinal inflammation through remodeling the gut microbiota, up-regulating the expression of ileocecal barrier-related genes, and maintaining the integrity of the intestinal epithelium. Our data suggest that supplementation of feed with ALA may be an effective strategy to alleviate S. Typhimurium infection in chickens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2024.127773 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.
View Article and Find Full Text PDFInfect Immun
January 2025
Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA.
infections pose significant public health challenges worldwide. The diversity of strains, particularly those isolated from environmental and clinical sources, necessitates innovative approaches to prevention and treatment. Previous research has shown that small extracellular vesicles (sEVs) produced by macrophages during Typhimurium infection can induce robust immune responses when used as a vaccine, offering complete protection in systemic infection models.
View Article and Find Full Text PDFcan persist asymptomatically within tissues for extended periods. This remarkable feat is achieved through intricate host-pathogen interactions in immune cell aggregates called granulomas, wherein find favorable cellular niches to exploit while the host limits its expansion and tissue dissemination. Here, using a mouse model of persistent infection, we identify a host-protective role of eosinophils in control of Typhimurium ( Tm) infection within the mesenteric lymph nodes (MLN), the main lymphoid tissue of Tm persistence.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), "Bruno Ubertini", Diagnostic Section of Piacenza, Italy Via Strada Della Faggiola 1, 29027 Podenzano, PC, Italy.
is diffused worldwide, and subsp. is spread worldwide with many serovars associated with the infection of domestic bovines. The most spread are .
View Article and Find Full Text PDFPoult Sci
December 2024
Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China. Electronic address:
Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!