A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilizing deep learning for automated detection of oral lesions: A multicenter study. | LitMetric

Utilizing deep learning for automated detection of oral lesions: A multicenter study.

Oral Oncol

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China. Electronic address:

Published: August 2024

Objectives: We aim to develop a YOLOX-based convolutional neural network model for the precise detection of multiple oral lesions, including OLP, OLK, and OSCC, in patient photos.

Materials And Methods: We collected 1419 photos for model development and evaluation, conducting both a comparative analysis to gauge the model's capabilities and a multicenter evaluation to assess its diagnostic aid, where 24 participants from 14 centers across the nation were invited. We further integrated this model into a mobile application for rapid and accurate diagnostics.

Results: In the comparative analysis, our model overperformed the senior group (comprising three most experienced experts with more than 10 years of experience) in macro-average recall (85 % vs 77.5 %), precision (87.02 % vs 80.29 %), and specificity (95 % vs 92.5 %). In the multicenter model-assisted diagnosis evaluation, the dental, general, and community hospital groups showed significant improvement when aided by the model, reaching a level comparable to the senior group, with all macro-average metrics closely aligning or even surpassing with those of the latter (recall of 78.67 %, 74.72 %, 83.54 % vs 77.5 %, precision of 80.56 %, 76.42 %, 85.15 % vs 80.29 %, specificity of 92.89 %, 91.57 %, 94.51 % vs 92.5 %).

Conclusion: Our model exhibited a high proficiency in detection of oral lesions, surpassing the performance of highly experienced specialists. The model can also help specialists and general dentists from dental and community hospitals in diagnosing oral lesions, reaching the level of highly experienced specialists. Moreover, our model's integration into a mobile application facilitated swift and precise diagnostic procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oraloncology.2024.106873DOI Listing

Publication Analysis

Top Keywords

oral lesions
16
detection oral
8
comparative analysis
8
mobile application
8
senior group
8
775 % precision
8
8029 % specificity
8
reaching level
8
highly experienced
8
experienced specialists
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!