The effect of heavy precipitation on the leaching of heavy metals from tropical coastal legacy tailings.

Waste Manag

School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China. Electronic address:

Published: September 2024

The continued growth in demand for mineral resources has led to a large amount of mining wastes, which is a major challenge in the context of carbon neutrality and climate change. In this study, runoff migration, batch leaching, and column experiments were used to investigate the short-, medium-, and long-term leaching of heavy metals from legacy tailings, respectively; the cumulative metal release kinetic equations were established, and the long-term effects of tailings leaching were verified by HYDRUS-1D. In runoff migration experiments, surface dissolution of tailings and the co-migration of adsorbed soil particles by erosion were the main carriers in the early stages of leachate formation (Mn ∼ 65 mg/L and SO up to 2697.2 mg/L). Batch leaching tests showed that the concentration of heavy metals in soil leached by acid rain were 0.1 ∼ 22.0 μg/L for Cr, 0.7 ∼ 26.0 μg/L for Cu, 4.8 ∼ 5646.0 μg/L for Mn, 0.3 ∼ 232.4 μg/L for Ni, and 1.3 ∼ 448.0 μg/L for Zn. The results of column experiments indicated that some soluble components and metals with high mobility showed a significant decreasing trend at cumulative L/S ≤ 2. Additionally, the metals have higher leaching rates under TCLP conditions, as shown by Mn > Co > Zn > Cd > Ni > Cu > Pb > Cr. The fitting results of Langmuir equation were closer to the cumulative release of metals in the real case, and the release amounts of Mn, Zn, Co, and Ni were higher with 55, 5.84, 2.66, and 2.51 mg/kg, respectively. The water flow within tailings affects the spatial distribution of metals, which mainly exist in relatively stable chemical fractions (F3 + F4 + F5 > 90 %) after leaching. Numerical simulation verified that Mn in leachate has reached 8 mg/L at a scale of up to 100 years. The research results are expected to provide technical basis for realizing the resource utilization of tailings in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2024.05.049DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
leaching heavy
8
legacy tailings
8
runoff migration
8
batch leaching
8
column experiments
8
leaching
7
metals
7
tailings
6
heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!