On-surface conversion reaction realizes advanced red phosphorus/carbon anode for high-performance lithium-ion batteries.

J Colloid Interface Sci

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China; Hubei Key Laboratory of Fuel Cells, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Published: October 2024

Red phosphorus (RP), the one of the most prospective anodes in lithium-ion batteries (LIBs), has been severely limited due to the intrinsic defects of massive volume expansion and low electronic conductivity. The vaporization-condensation-conversion (VCC), which confines RP nanoparticles into carbon host, is the most widely used method to address the above drawbacks and prepare RP/C nanostructured composites. However, the volume effect-dominated RP caused by the inevitably deposition of RP vapor on the surface of carbon material suffers from the massive volume change and unstable solid electrolyte interface (SEI) film. Herein, we propose a simple interfacial modification method to eliminate the superficial RP and yield stable surface composed of ion-conducting Li3PS4 solid electrolyte, endowing RP/AC composites excellent cycling performance and ultrafast reaction kinetics. Therefore, the RP/AC@S composites exhibit 926 mAh/g after 320 cycles at 0.2 A/g (running over 181 days), with 81.6 % capacity retention and a corresponding capacity decay rate of as low as 0.059 %. When coupled with LiFePO4 cathode, the full cells present superior cycling performance (62.1 mAh/g after 500 cycles at 1 A/g) and excellent rate capability (81.1 mAh/g at 1.0 A/g).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.05.235DOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
8
massive volume
8
solid electrolyte
8
cycling performance
8
cycles a/g
8
on-surface conversion
4
conversion reaction
4
reaction realizes
4
realizes advanced
4
advanced red
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!