P4B (2-phenyl-1-[4-(6-(piperidin-1-yl) pyridazin-3-yl) piperazin-1-yl] butan-1-one) is a novel cellulose biosynthesis inhibitor (CBI) discovered in a screen for molecules to identify inhibitors of Arabidopsis (Arabidopsis thaliana) seedling growth. Growth and cellulose synthesis inhibition by P4B were greatly reduced in a novel mutant for the cellulose synthase catalytic subunit gene CESA3 (cesa3pbr1). Cross-tolerance to P4B was also observed for isoxaben-resistant (ixr) cesa3 mutants ixr1-1 and ixr1-2. P4B has an original mode of action as compared with most other CBIs. Indeed, short-term treatments with P4B did not affect the velocity of cellulose synthase complexes (CSCs) but led to a decrease in CSC density in the plasma membrane without affecting their accumulation in microtubule-associated compartments. This was observed in the wild type but not in a cesa3pbr1 background. This reduced density correlated with a reduced delivery rate of CSCs to the plasma membrane but also with changes in cortical microtubule dynamics and orientation. At longer timescales, however, the responses to P4B treatments resembled those to other CBIs, including the inhibition of CSC motility, reduced growth anisotropy, interference with the assembly of an extensible wall, pectin demethylesterification, and ectopic lignin and callose accumulation. Together, the data suggest that P4B either directly targets CESA3 or affects another cellular function related to CSC plasma membrane delivery and/or microtubule dynamics that is bypassed specifically by mutations in CESA3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376392 | PMC |
http://dx.doi.org/10.1093/plphys/kiae232 | DOI Listing |
Int J Biol Macromol
December 2024
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, PR China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan 610225, PR China. Electronic address:
Cellulose, synthesized by cellulose synthase (CESA) complexes, is an essential component of plant cell walls; defects in cellulose synthesis compromise cell wall integrity. The maintenance of this integrity is vital for plant growth, development, and stress responses. Consequently, plants must continuously synthesize and remodel their cell walls, a process intricately linked to cellulose biosynthesis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
Potato () is the fourth largest staple food crop globally. However, potato cultivation is frequently challenged by various diseases during planting, significantly impacting both crop quality and yield. Pathogenic microorganisms must first breach the plant's cell wall to successfully infect potato plants.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China.
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!