Dimerized quantum magnets are exotic crystalline materials where Bose-Einstein condensation of magnetic excitations can happen. However, known dimerized quantum magnets are limited to only a few oxides and halides. Here, we unveil 9 dimerized quantum magnets and 11 conventional antiferromagnets in ternary metal borides MTB (M = Sc, Y, La, Ce, Lu, Mg, Ca, and Al; T = V, Cr, Mn, Fe, Co, and Ni), where T atoms are arranged in structural dimers. Quantum magnetism in these compounds is dominated by strong antiferromagnetic (AFM) interactions between Cr (Cr and Mn for M = Mg and Ca) atoms within the dimers, with much weaker interactions between the dimers. These systems are proposed to be close to a quantum critical point between a disordered singlet spin-dimer phase, with a spin gap, and the ordered conventional Néel AFM phase. They greatly enrich the materials inventory that allows investigations of the spin-gap phase. Conventional antiferromagnetism in these compounds is dominated by ferromagnetic Mn (Fe for M = Mg and Ca) interactions within the dimers. The predicted stable and nonmagnetic (NM) YFeB phase is synthesized and characterized, providing a scarce candidate to study Fe dimers and Fe ladders in borides. The identified quantum, conventional, and NM systems provide a platform with abundant possibilities to tune the magnetic exchange coupling by doping and study the unconventional quantum phase transition and conventional magnetic transitions. This work opens new avenues for studying novel magnetism in borides arising from spin dimers and establishes a theoretical workflow for future searches for dimerized quantum magnets in other families of materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c05478 | DOI Listing |
Nanomaterials (Basel)
December 2024
Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Liège, Belgium.
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034 Strasbourg, France.
The high potential of non-covalent arene-fluoroarene intermolecular interactions in the design of liquid crystals lies in their ability to strongly promote self-assembly, improve the order and stability of the supramolecular mesophases, and enable tuneability of the optical and electronic properties, which can potentially be exploited for advanced applications in display technologies, photonic devices, sensors, and organic electronics. We recently successfully reported the straightforward synthesis of several mesogens containing four lateral aliphatic chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SFAr) of various types of commercially available fluoroarenes with the electrophilic organolithium derivatives 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl (2Li- ).
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and Astronomy, and Smalley-Curl Institute, Rice University, Houston, Texas 77251-1892, USA.
The hybrid quantum system of cold atomic gas and optical cavity can host many exotic phenomena including phase transitions and multistabilities. In this Letter, we investigate the effect of photon hopping between two Dicke cavities and show rich quantum phases for steady states and dynamic processes. Starting from a generic dimer system where the two cavities are not necessarily identical, we analytically obtain all possible steady-state phases and confirm their existence by numerical calculations.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria.
Intermolecular vibrations are extremely challenging to describe but are the most crucial part for determining entropy and hence free energies and enable, for instance, the distinction between different crystal-packing arrangements of the same molecule via THz spectroscopy. Herein, we introduce a benchmark dataset-V30-containing 30 small molecular dimers with intermolecular interactions ranging from exclusively van der Waals dispersion to systems with hydrogen bonds. All the calculations are performed with the gold standard of quantum chemistry CCSD(T).
View Article and Find Full Text PDFNanoscale Horiz
December 2024
Department of Physics, Paderborn University, 33098 Paderborn, Germany.
Realizing plasmonic nanogaps with a refractive index ( = 1) environment in metallic nanoparticle (NP) structures is highly attractive for a wide range of applications. So far in self-assembly-based approaches, without surface functionalization of metallic NPs, achieving such extremely small nanogaps is challenging. Surface functionalization introduces changes in the refractive index at nanogaps, which in turn deteriorates the desired plasmonic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!