Alkali metal doping of multi-walled carbon nanotubes is of great interest, both fundamentally to explore the effect of dopants on quasi-one-dimensional electrical systems and for energy applications such as alkali metal storage. We present an investigation with complementary photoemission and Raman spectroscopies, fully carried out in an ultra-high vacuum, to unveil the electronic and vibrational response of a forest of highly aligned multi-walled carbon nanotubes by in situ potassium doping. The charge donation by the alkali adatoms induces a plasmon mode, and the density of states undergoes an energy shift consistent with electron donation and band filling of the multi-walled carbon nanotube band structure. The π-states in the valence band and the Raman peaks unveil an evolution that can be ascribed to charge donation and partially to a tensile strain exerted by the K adatoms on the carbon lattice. All these effects are thermally reversible, fostering these materials as a potential system for electronic charge harvesting.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0206952DOI Listing

Publication Analysis

Top Keywords

multi-walled carbon
16
carbon nanotubes
12
potassium doping
8
aligned multi-walled
8
alkali metal
8
charge donation
8
carbon
5
doping vertically
4
vertically aligned
4
multi-walled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!