The growing interest in the non-equilibrium assembly of colloidal particles in active liquids is driven by the motivation to create novel structures endowed with tunable properties unattainable within the confines of equilibrium systems. Here, we present an experimental investigation of the structural features of colloidal assemblies in active liquids of chiral . The colloidal particles form dynamic clusters due to the effective interaction mediated by active media. The activity and chirality of the swimmers strongly influence the dynamics and local ordering of colloidal particles, resulting in clusters with persistent rotation, whose structure differs significantly from those in equilibrium systems with attractive interactions, such as colloid-polymer mixtures. Our colloid-bacteria mixture displays several hallmark features of a percolation transition at a critical density, where the clusters span the system size. A closer examination of the critical exponents associated with cluster size distribution, the average cluster size, and the correlation length in the vicinity of the critical density shows deviations from the prediction of the standard continuum percolation model. Therefore, our experiments reveal a richer phase behavior of colloidal assemblies in active liquids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00305eDOI Listing

Publication Analysis

Top Keywords

colloidal particles
16
active liquids
12
particles active
8
equilibrium systems
8
colloidal assemblies
8
assemblies active
8
critical density
8
cluster size
8
colloidal
6
active
5

Similar Publications

Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.

View Article and Find Full Text PDF

Direct force measurements by atomic force microscopy (AFM) have become an indispensable analytical tool in the last decades. Force measurements have been widely used for adhesion measurements, often in combination with the colloidal probe technique. For the latter technique, a colloidal particle is attached to the end of an AFM cantilever, proving great flexibility in terms of colloid/surface interaction to be studied.

View Article and Find Full Text PDF

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Measuring XNA polymerase fidelity in a hydrogel particle format.

Nucleic Acids Res

January 2025

Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.

Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!