Interactions of the cations Li, Na, Mg, and Ca with L-glutamate (Glu) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl, or CaCl ((MCl) ≤ 1.5 M) were evaluated and experiments supplemented by density functional theory and 3D reference interaction site model (3D-RISM) calculations. In addition to the modes found for aqueous NaGlu, namely, the reorientation of free Glu ions (peaking at ∼1.6 GHz), of moderately retarded HO molecules hydrating the carboxylate moieties of Glu (∼8.4 GHz), of the cooperative resettling of the H-bond network of bulk water (∼20 GHz), and its preceding fast H-bond flip (∼400 GHz), an additional low-frequency relaxation at ∼0.4 GHz was detected upon the addition of the four salts. In the case of NaGlu + MgCl(aq) and NaGlu + CaCl(aq), this mode could be unequivocally assigned to an ion pair formed by the cation and the side-chain carboxylate moiety of Glu. For NaGlu + LiCl(aq), either this species or a backbone-[Li-HO-Cl-Glu] triple ion is formed. Binding constants increase in the order Li
Download full-text PDF
Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182346 PMC http://dx.doi.org/10.1021/acs.jpcb.4c02373 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!