A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photostimulated Pyrothermoelectric Coupling in Two-Dimensional Tin Monoselenide Enabling Zero-Biased Multimodal Transducers. | LitMetric

Despite the advancement of the Internet of Things (IoT) and portable devices, the development of zero-biased sensing systems for the dual detection of light and gases remains a challenge. As an emerging technology, direct energy conversion driven by intriguing physical properties of two-dimensional (2D) materials can be realized in nanodevices or a zero-biased integrated system. In this study, we unprecedentedly attempted to exploit the photostimulated pyrothermoelectric coupling of two-dimensional SnSe for use in zero-biased multimodal transducers for the dual detection of light and gases. We synthesized homogeneous, large-area 6 in SnSe multilayers via a rational synthetic route based on the thermal decomposition of a solution-processed single-source precursor. Zero-biased SnSe transducers for the dual monitoring of light and gases were realized by exploiting the synergistic coupling of the photostimulated pyroelectric and thermoelectric effects of SnSe. The extracted photoresponsivity at 532 nm and NO gas responsivity of the SnSe-based transducers corresponded to 1.07 × 10 A/W and 13263.6% at 0 V, respectively. To bring universal applicability of the zero-biased SnSe transducers, the wide operation bandwidth photoelectrical properties (visible to NIR) and dynamic current responses toward two NO/NH gases were systematically evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01481DOI Listing

Publication Analysis

Top Keywords

light gases
12
photostimulated pyrothermoelectric
8
pyrothermoelectric coupling
8
coupling two-dimensional
8
zero-biased multimodal
8
multimodal transducers
8
dual detection
8
detection light
8
transducers dual
8
zero-biased snse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!