A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intra-articular sustained-release of pirfenidone as a disease-modifying treatment for early osteoarthritis. | LitMetric

Intra-articular sustained-release of pirfenidone as a disease-modifying treatment for early osteoarthritis.

Bioact Mater

Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China.

Published: September 2024

Osteoarthritis (OA) is a major clinical challenge, and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets. Effective early treatments are urgently needed to prevent OA progression. The excessive amount of transforming growth factor β (TGFβ) is one of the major causes of synovial fibrosis and subchondral bone sclerosis, and such pathogenic changes in early OA precede cartilage damage. Herein we report a novel strategy of intra-articular sustained-release of pirfenidone (PFD), a clinically-approved TGFβ inhibitor, to achieve disease-modifying effects on early OA joints. We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFβ1 (as those levels found in patients' synovial fluid). A monthly injection strategy was then designed of using poly lactic--glycolic acid (PLGA) microparticles and hyaluronic acid (HA) solution to enable a sustained release of PFD (the "PLGA-PFD + HA" strategy). This strategy effectively regulated OA progression in destabilization of the medial meniscus (DMM)- induced OA mice model, including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA, and reduced synovitis and pain with cartilage preservation effects. This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145079PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.05.028DOI Listing

Publication Analysis

Top Keywords

subchondral bone
12
intra-articular sustained-release
8
sustained-release pirfenidone
8
excessive amount
8
bone sclerosis
8
early
5
disease-modifying
4
pirfenidone disease-modifying
4
disease-modifying treatment
4
treatment early
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!