A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification. | LitMetric

Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification.

iScience

Co-Creation Center for Disaster Resilience, International Research Institute of Disaster Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan.

Published: June 2024

New breast cancer cases have surpassed lung cancer, becoming the world's most prevalent cancer. Despite advancing medical image analysis, deep learning's lack of interpretability limits its adoption among pathologists. Hence, a nuclei-level prior knowledge constrained multiple instance learning (MIL) (NPKC-MIL) for breast whole slide image (WSI) classification is proposed. NPKC-MIL primarily involves the following steps: Initially, employing the transfer learning to extract patch-level features and aggregate them into slide-level features through attention pooling. Subsequently, abstract the extracted nuclei as nodes, establish nucleus topology using the K-NN (K-Nearest Neighbors, K-NN) algorithm, and create handcrafted features for nodes. Finally, combine patch-level deep learning features with nuclei-level handcrafted features to fine-tune classification results generated by slide-level deep learning features. The experimental results demonstrate that NPKC-MIL outperforms current comparable deep learning models. NPKC-MIL expands the analytical dimension of WSI classification tasks and integrates prior knowledge into deep learning models to improve interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145340PMC
http://dx.doi.org/10.1016/j.isci.2024.109826DOI Listing

Publication Analysis

Top Keywords

deep learning
16
prior knowledge
12
nuclei-level prior
8
knowledge constrained
8
constrained multiple
8
multiple instance
8
instance learning
8
slide image
8
wsi classification
8
handcrafted features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!