Combo chloro-photosynthetic device and applications for greenhouse gas reduction campaign and smart agriculture.

Heliyon

Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand.

Published: May 2024

AI Article Synopsis

  • Rising carbon dioxide levels threaten all life, making plant absorption a key method for combating this issue.
  • The study developed a new sensor using Non-Dispersive Infrared (NDIR) spectroscopy and optics to measure photosynthesis and chlorophyll-a simultaneously with high accuracy.
  • Test results showed the new sensor's measurements were comparable to a commercial system, indicating its potential for improving plantation processes and smart farming to help reduce atmospheric CO levels.

Article Abstract

The increasing carbon dioxide (CO) levels in the air pose a direct threat to all living organisms and the environment. Leveraging the ability of plants to absorb CO is one of the most effective methods for countering these rising CO levels. The present study aimes to develop a combo photosynthetic and chlorophyll-a sensor based on Non-Dispersive Infrared (NDIR) spectroscopy and an optical method. This sensor enables simultaneous, intensive measurement of net photosynthesis and chlorophyll-a content and yields accurate information. Comparative analysis of the efficacy of the sensors to that of a commercial instrument demonstrated that the measurement values obtained from the developed photosynthetic and chlorophyll-a sensors were not significantly different from those acquired with the commercial instrument (portable photosynthesis system LI-6400) and chlorophyll metre (SPAD-502), with a 95 % confidence level. Furthermore, the developed photosynthetic sensor could be used as a new correlation unit for chlorophyll-a content and net photosynthesis. Therefore, the sensor can be used to propose effective plantation processes to reduce atmospheric CO levels and in smart farming systems to control the quality of yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145496PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31552DOI Listing

Publication Analysis

Top Keywords

photosynthetic chlorophyll-a
8
net photosynthesis
8
chlorophyll-a content
8
commercial instrument
8
developed photosynthetic
8
combo chloro-photosynthetic
4
chloro-photosynthetic device
4
device applications
4
applications greenhouse
4
greenhouse gas
4

Similar Publications

Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

A holistic study on the effects of a rural flood detention basin: Flood peaks, water quality and grass growth.

J Environ Manage

December 2024

School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork, Ireland.

Nature-based Solutions (NbS) are widely advocated to have multiple benefits, including in flood risk reduction, water quality improvement and ecosystem health. There are, however, few empirical studies quantifying such multi-functionality. Given the ongoing pressures of flooding and poor water quality within Europe, there is an urgent need for empirical evidence to assess the potential for NbS features to address these issues.

View Article and Find Full Text PDF

Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!