Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diploid inbred-based F hybrid True Potato Seed (DHTPS) breeding is a novel technique to transform potato breeding and cultivation across the globe. Significant efforts are being made to identify elite diploids, dihaploids and develop diploid inbred lines for heterosis exploitation in potatoes. Self-incompatibility is the first obstacle for developing inbred lines in diploid potatoes, which necessitates the introgression of a dominant S locus inhibitor gene () for switching self-incompatibility to self-compatibility. We evaluated a set of 357 diploid clones in different selfing generations for self-compatibility and degree of homozygosity using Kompetitive Allele Specific PCR (KASP) Single Nucleotide Polymorphism (SNP) markers. A subset of 10 KASP markers of the candidate region on chromosome 12 showed an association with the phenotype for self-compatibility. The results revealed that the selected 10 KASP markers for the gene genotype could be deployed for high throughput rapid screening of self-compatibility in diploid populations and to identify new sources of self-compatibility. The homozygosity assessed through 99 KASP markers distributed across all the chromosomes of the potato genome was 20-78 % in founder diploid clones, while different selfing generations, i.e., S, S, S and S observed 36.1-80.4, 56.9-82.8, 59.5-85.4 and 73.7-87.8 % average homozygosity, respectively. The diploid plants with ∼80 % homozygosity were also observed in the first selfing generation, which inferred that homozygosity assessment in the early generations itself could identify the best plants with high homozygosity to speed up the generation of diploid inbred lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145485 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e31507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!