First-Principles Investigation of the Effects of UF and ThF Fuels on the Structural, Dynamic, and Thermodynamic Properties of LiF-NaF.

J Phys Chem B

Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Published: June 2024

AI Article Synopsis

  • Understanding molten salt properties is crucial for the safe and efficient design and operation of molten salt reactors (MSRs); however, experimental investigations face challenges like high temperatures and corrosiveness.
  • To overcome these challenges, computational simulations, particularly first-principles molecular dynamics, were used to analyze the properties of eutectic LiF-NaF with uranium and thorium fuel additives.
  • The study revealed that adding these fuel elements leads to changes in the salt’s structure, including a medium-range ordering, which increases viscosity through enhanced shear stress correlations.

Article Abstract

An in-depth understanding and characterization of molten salt properties are necessary for the optimized design, efficient operation, and safety assurance of molten salt reactors (MSRs). Investigating molten salt properties in experimental settings can be challenging and time-consuming due to the high temperatures of interest, the salt's corrosiveness, purity and composition control, and health and safety concerns. Therefore, it is beneficial to perform computational screening to assist in the ultimate experimental measurements. Herein, we used first-principles molecular dynamics simulations to calculate several thermophysical, structural, and dynamic properties of eutectic LiF-NaF with fuel additives UF and ThF. We found that with the incorporation of uranium or thorium, a prepeak appears in the structure factor, indicative of a medium-range structural ordering. Furthermore, we explore the mechanism through which these structural changes enhance shear stress correlations, thereby increasing the salt's viscosity. This work highlights the importance of studying the atomic-scale structure of molten salts and how the addition of fuel elements can substantially affect it.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c01243DOI Listing

Publication Analysis

Top Keywords

molten salt
12
structural dynamic
8
salt properties
8
first-principles investigation
4
investigation effects
4
effects thf
4
thf fuels
4
structural
4
fuels structural
4
dynamic thermodynamic
4

Similar Publications

Optimization of MoNiCr Alloy Production Through Additive Manufacturing.

Materials (Basel)

December 2024

COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany, Czech Republic.

One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.

View Article and Find Full Text PDF

Efficient activation of peroxymonosulfate by MoTiCT@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions.

J Colloid Interface Sci

December 2024

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, MoTiCT@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation.

View Article and Find Full Text PDF

Recent progress in electrochemical recycling of waste NdFeB magnets.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!