cis-Diol-containing molecules, an essential type of compounds in living organisms, have attracted intensive research interest from various fields. The analysis of cis-diol-containing molecules is still suffering from some drawbacks, including low abundance and abundant interference. Metal-organic frameworks (MOFs) have proven to be an ideal sorbent for sample preparation. However, most of the reported MOFs are mainly restricted to a microporous regime (pore size <2 nm), which greatly limits the application. Herein, a facile strategy is established to construction of boronate affinity MOFs via the postsynthetic ligand-exchange process. Owing to the fact that the ligand-exchange process was assisted by the structural integrity of the primitive metal-organic framework and the great compatibility of click chemistry, the obtained EPBA-PCN-333(Fe) is able to realize the maximum maintaining the porosity and crystallinity of the parent material. Several intriguing features of EPBA-PCN-333(Fe) (e.g., excellent selectivity, efficient diffusion, good accessibility, and size exclusion effect) are experimentally demonstrated via a series of cis-diol-containing molecules with different molecular sizes (small molecules, glycopeptides, and glycoproteins). The binding performance of EPBA-PCN-333(Fe) is evaluated by employing catechol as the test molecule (binding capacity: 0.25 mmol/g, LOD: 200 ng/mL). Finally, the real-world applications of EPBA-PCN-333(Fe) were demonstrated by the detection of nucleosides of human urine samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03964DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
cis-diol-containing molecules
8
structure-assisted boronic
4
boronic acid
4
acid implanted
4
implanted mesoporous
4
mesoporous metal-organic
4
frameworks specific
4
specific extraction
4
extraction cis-diol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!