Background: Noradrenaline is a standard treatment for hypotension in acute care. The precise effects of noradrenaline on cerebral blood flow in health and disease remain unclear.

Methods: We systematically reviewed and synthesised data from studies examining changes in cerebral blood flow in healthy participants and patients with traumatic brain injury and critical illness.

Results: Twenty-eight eligible studies were included. In healthy subjects and patients without critical illness or traumatic brain injury, noradrenaline did not significantly change cerebral blood flow velocity (-1.7%, 95%CI -4.7-1.3%) despite a 24.1% (95%CI 19.4-28.7%) increase in mean arterial pressure. In patients with traumatic brain injury, noradrenaline significantly increased cerebral blood flow velocity (21.5%, 95%CI 11.0-32.0%), along with a 33.8% (95%CI 14.7-52.9%) increase in mean arterial pressure. In patients who were critically ill, noradrenaline significantly increased cerebral blood flow velocity (20.0%, 95%CI 9.7-30.3%), along with a 32.4% (95%CI 25.0-39.9%) increase in mean arterial pressure. Our analyses suggest intact cerebral autoregulation in healthy subjects and patients without critical illness or traumatic brain injury., and impaired cerebral autoregulation in patients with traumatic brain injury and who were critically ill. The extent of mean arterial pressure changes and the pre-treatment blood pressure levels may affect the magnitude of cerebral blood flow changes. Studies assessing cerebral blood flow using non-transcranial Doppler methods were inadequate and heterogeneous in enabling meaningful meta-analysis.

Conclusions: Noradrenaline significantly increases cerebral blood flow in humans with impaired, not intact, cerebral autoregulation, with the extent of changes related to the severity of functional impairment, the extent of mean arterial pressure changes and pre-treatment blood pressure levels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/anae.16313DOI Listing

Publication Analysis

Top Keywords

cerebral blood
36
blood flow
36
traumatic brain
24
brain injury
24
arterial pressure
20
cerebral
12
critical illness
12
patients traumatic
12
flow velocity
12
increase arterial
12

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.

View Article and Find Full Text PDF

Trousseau's syndrome is a thromboembolic disorder associated with malignancies, with cerebral infarction and hemorrhage representing common central nervous system complications in patients with cancer. This report details the diagnosis and treatment of a patient with gastric adenocarcinoma at our institution who concurrently developed cerebral infarction and subarachnoid hemorrhage. We performed a comprehensive literature review in the Wanfang and PubMed databases, searching for relevant studies on Trousseau's syndrome, cerebral embolism, and subarachnoid hemorrhage.

View Article and Find Full Text PDF

Cerebral perfusion correlates with amyloid deposition in patients with mild cognitive impairment due to Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:

Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!