Purpose: The sintering technique and cooling strategy influence the strength of zirconia. This study examined the impact of altering the cooling rate of glass-infiltrated monolayer and multilayer 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) on their strength.
Materials And Methods: One-hundred eighty (180) specimens (width × length × thickness = 10 × 20 × 2 mm) were prepared using monolayer (Mo: Cercon-xt) and multilayer (Mu: Cercon-xt ML) 5Y-PSZ. Randomly distributed specimens (n = 15/group) were sintered with traditional (T) versus glass infiltrated (G) technique and cooled down with different cooling rates: slow (S: 5°C/min), normal (N: 35°C/min), and fast (F: 70°C/min). Four-point bending test was used to measure flexural strength (σ). Microstructures were investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Three-way ANOVA and Tamhane comparisons were determined for a significant difference of σ (p < 0.05). Weibull analysis was determined for Weibull modulus (m).
Results: The highest σ (MPa) was seen for GMuS (696.8 ± 69.8). Mo-PSZ and Mu-PSZ showed no significant difference in σ. G-sintering presented significantly higher σ (659.9 ± 79.3) than T-sintering (426.0 ± 63.7). S-cooling (560.9 ± 126.1) had the highest σ. The highest m-value was observed in GMuN (12.1 ± 3.8). A significant difference in σ was indicated due to cooling rates and sintering techniques (p < 0.05).
Conclusions: Glass infiltration significantly enhanced strength through elastic gradience. F-cooling reduced grain size, impaired grain boundary integration, and increased the tetragonal to monoclinic phase transition, significantly decreasing flexural strength in traditional sintering. Nevertheless, F-cooling was recommended for glass-infiltrated 5Y-PSZ to enhance strength while reducing processing time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13872 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!