Cohesin Complex: Structure and Principles of Interaction with DNA.

Biochemistry (Mosc)

Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.

Published: April 2024

Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297924040011DOI Listing

Publication Analysis

Top Keywords

smc complexes
12
genomic dna
8
dna molecules
8
loop extrusion
8
cohesin
6
dna
6
cohesin complex
4
complex structure
4
structure principles
4
principles interaction
4

Similar Publications

This paper presents a novel and comprehensive control framework for the Rotary Inverted Pendulum (RIP), focusing on a hybrid control strategy that addresses the limitations of conventional methods in nonlinear and complex systems. The proposed controller synergistically combines an Optimized Fuzzy Logic Controller (OFLC) with Sliding Mode Control (SMC), leveraging the strengths of both techniques to achieve superior performance. The integration of Particle Swarm Optimization (PSO) into the OFLC significantly enhances its adaptability and precision, while the SMC law provides robust disturbance rejection and system stability.

View Article and Find Full Text PDF

Revised taxonomic classification of the genomes, providing new insights into the genus .

Front Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Background: strains are important opportunistic pathogens with great potential applications in industry and agriculture. Their significant genetic and phenotypic diversity has led to several changes in their taxonomic localization and was prone to inaccurate species classification based on traditional identification methods.

Methods: All 2,615 genomes of the genus were obtained from the NCBI genome database.

View Article and Find Full Text PDF

Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin.

View Article and Find Full Text PDF

Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!