A comparative plastome approach enhances the assessment of genetic variation in the Melilotus genus.

BMC Genomics

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.

Published: June 2024

Background: Melilotus, a member of the Fabaceae family, is a pivotal forage crop that is extensively cultivated in livestock regions globally due to its notable productivity and ability to withstand abiotic stress. However, the genetic attributes of the chloroplast genome and the evolutionary connections among different Melilotus species remain unresolved.

Results: In this study, we compiled the chloroplast genomes of 18 Melilotus species and performed a comprehensive comparative analysis. Through the examination of protein-coding genes, we successfully established a robust phylogenetic tree for these species. This conclusion is further supported by the phylogeny derived from single-nucleotide polymorphisms (SNPs) across the entire chloroplast genome. Notably, our findings revealed that M. infestus, M. siculus, M. sulcatus, and M. speciosus formed a distinct subgroup within the phylogenetic tree. Additionally, the chloroplast genomes of these four species exhibit two shared inversions. Moreover, inverted repeats were observed to have reemerged in six species within the IRLC. The distribution patterns of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) within protein-coding genes indicated that ycf1 and ycf2 accumulated nonconservative alterations during evolutionary development. Furthermore, an examination of the evolutionary rate of protein-coding genes revealed that rps18, rps7, and rpl16 underwent positive selection specifically in Melilotus.

Conclusions: We present a comparative analysis of the complete chloroplast genomes of Melilotus species. This study represents the most thorough and detailed exploration of the evolution and variability within the genus Melilotus to date. Our study provides valuable chloroplast genomic information for improving phylogenetic reconstructions and making biogeographic inferences about Melilotus and other Papilionoideae species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149310PMC
http://dx.doi.org/10.1186/s12864-024-10476-yDOI Listing

Publication Analysis

Top Keywords

melilotus species
12
chloroplast genomes
12
protein-coding genes
12
chloroplast genome
8
genomes melilotus
8
comparative analysis
8
phylogenetic tree
8
single-nucleotide polymorphisms
8
polymorphisms snps
8
melilotus
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!