The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively. Moreover, a gate-induced transition of electron-hole crystals is directly visualized, further corroborating their nature as correlation-driven charge crystals. The realization and atom-resolved visualization of imbalanced electron-hole crystals in a doped Mott insulator opens new doors in the search for correlated bosonic states within strongly correlated materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-024-01910-3 | DOI Listing |
ACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Inner Mongolia University, Daxue West Road, 010021, Hohhot, CHINA.
Crystal-facet heterojunction engineering of mesoporous nanoreactors with highly redox-active represents an efficacious strategy for the transformation of CO2 into valuable C2 products (e.g., C2H4).
View Article and Find Full Text PDFSmall
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFNat Commun
January 2025
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden, Germany.
Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India. Electronic address:
The study presents the fabrication and superior photoactivity of a ternary g-CN/FeVO/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!