A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

LORIS robustly predicts patient outcomes with immune checkpoint blockade therapy using common clinical, pathologic and genomic features. | LitMetric

Despite the revolutionary impact of immune checkpoint blockade (ICB) in cancer treatment, accurately predicting patient responses remains challenging. Here, we analyzed a large dataset of 2,881 ICB-treated and 841 non-ICB-treated patients across 18 solid tumor types, encompassing a wide range of clinical, pathologic and genomic features. We developed a clinical score called LORIS (logistic regression-based immunotherapy-response score) using a six-feature logistic regression model. LORIS outperforms previous signatures in predicting ICB response and identifying responsive patients even with low tumor mutational burden or programmed cell death 1 ligand 1 expression. LORIS consistently predicts patient objective response and short-term and long-term survival across most cancer types. Moreover, LORIS showcases a near-monotonic relationship with ICB response probability and patient survival, enabling precise patient stratification. As an accurate, interpretable method using a few readily measurable features, LORIS may help improve clinical decision-making in precision medicine to maximize patient benefit. LORIS is available as an online tool at https://loris.ccr.cancer.gov/ .

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43018-024-00772-7DOI Listing

Publication Analysis

Top Keywords

predicts patient
8
immune checkpoint
8
checkpoint blockade
8
clinical pathologic
8
pathologic genomic
8
genomic features
8
icb response
8
loris
7
patient
6
loris robustly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!