Metabolic dysfunction-associated steatohepatitis (MASH), previously called non-alcoholic steatohepatitis (NASH), is a growing concern worldwide, with liver fibrosis being a critical determinant of its prognosis. Monocyte-derived macrophages have been implicated in MASH-associated liver fibrosis, yet their precise roles and the underlying differentiation mechanisms remain elusive. In this study, we unveil a key orchestrator of this process: long chain saturated fatty acid-Egr2 pathway. Our findings identify the transcription factor Egr2 as the driving force behind monocyte differentiation into hepatic lipid-associated macrophages (hLAMs) within MASH liver. Notably, Egr2-deficiency reroutes monocyte differentiation towards a macrophage subset resembling resident Kupffer cells, hampering hLAM formation. This shift has a profound impact, suppressing the transition from benign steatosis to liver fibrosis, demonstrating the critical pro-fibrotic role played by hLAMs in MASH pathogenesis. Long-chain saturated fatty acids that accumulate in MASH liver emerge as potent inducers of Egr2 expression in macrophages, a process counteracted by unsaturated fatty acids. Furthermore, oral oleic acid administration effectively reduces hLAMs in MASH mice. In conclusion, our work not only elucidates the intricate interplay between saturated fatty acids, Egr2, and monocyte-derived macrophages but also highlights the therapeutic promise of targeting the saturated fatty acid-Egr2 axis in monocytes for MASH management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148031 | PMC |
http://dx.doi.org/10.1038/s42003-024-06357-5 | DOI Listing |
Metabolites
December 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
Background: The gut microbiota are an important interface between the host and the environment, mediating the host's interactions with nutritive and non-nutritive substances. Dietary contaminants like Bisphenol A (BPA) may disrupt the microbial community, leaving the host susceptible to additional exposures and pathogens. BPA has long been a controversial and well-studied contaminant, so its structural analogues like Bisphenol S (BPS) are replacing it in consumer products, but have not been well studied.
View Article and Find Full Text PDFMar Drugs
November 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
The production of fucoxanthin and fatty acids in has been examined, but the role of elements like phosphorus in their mutualistic interactions is not well understood. To fill this gap, our study utilized potassium dihydrogen phosphate (KHPO) as a source of phosphorus to examine its impact on the synthesis of fucoxanthin and fatty acids in . Our findings revealed that at a phosphorus concentration of 10 mg L, the cell density (9.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China.
Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures. Currently, the associations among skin microbiota, circulating metabolites, and epilepsy are still not well studied. In this study, we applied univariate and two-step Mendelian randomization analysis using single nucleotide polymorphisms as instrumental variables to analyze the possible associations.
View Article and Find Full Text PDFGels
December 2024
Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA.
Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel of animal fats, these oleogels provide a novel approach to improving the nutritional profile of sausages while maintaining desirable sensory characteristics. This review critically evaluates cutting-edge research on oleogels, emphasizing innovations in their ability to enhance emulsion stability, increase cooking yield, reduce processing weight loss, and optimize fatty acid composition by reducing overall fat and saturated fat levels.
View Article and Find Full Text PDFJ Biochem
December 2024
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
Lysophosphatidic acid acyltransferase (LPAAT) is an enzyme responsible for the second acylation step of phospholipid biosynthesis and transforms lysophosphatidic acid to phosphatidic acid, a universal precursor of various phospholipids. In addition to the well-studied plsC-encoded LPAAT (EcPlsC), we previously found that Escherichia coli has another LPAAT that is encoded by yihG (EcYihG). EcPlsC and EcYihG are integral membrane proteins and have never been solubilized and purified in their active form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!