Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148186 | PMC |
http://dx.doi.org/10.1038/s41467-024-49166-4 | DOI Listing |
Adv Sci (Weinh)
December 2024
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
The real-time monitoring of in vivo electrophysiological and biochemical signals provides critical insights into the activities of tissues and organs. As the activity and metabolic state of different sites in the muscle vary, multichannel detection is necessary to capture the functional state of the whole muscle, yet the access to the bio-information in subcutaneous space remained challenging. This work reports the development of a reconfigurable microneedle electrode array integrated system designed to achieve painless and minimally invasive monitoring of subcutaneous electromyogram (EMG), oxygen species, and pH through an array of thumbtack-shaped microneedle (TSMN) electrode.
View Article and Find Full Text PDFSmall Methods
October 2024
Department of Orthopedic Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
Human parathyroid hormone (1-34) (PTH) exhibits osteoanabolic and osteocatabolic effects, with shorter plasma exposure times favoring bone formation. Subcutaneous injection (SCI) is the conventional delivery route for PTH but faces low delivery efficiency due to limited passive diffusion and the obstruction of the vascular endothelial barrier, leading to prolonged drug exposure times and reduced osteoanabolic effects. In this work, a microcurrent delivery system (MDS) based on multimicrochannel microneedle arrays (MMAs) is proposed, achieving high efficiency and safety for PTH transdermal delivery.
View Article and Find Full Text PDFNano Lett
October 2024
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
J Colloid Interface Sci
January 2025
College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Atopic dermatitis is a chronic, inflammation skin disease that remains a major public health challenge. The current drug-loading hydrogel dressings offer numerous benefits with enhanced loading capacity and a moist-rich environment. However, their development is still limited by the accessibility of a suitable driven source outside the clinical environment for precise control over transdermal delivery kinetics.
View Article and Find Full Text PDFLasers Med Sci
August 2024
Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
This systematic review evaluated the efficacy and safety of photodynamic therapy (PDT) in the management of cutaneous leishmaniasis (CL). The electronic search for identification of relevant studies, adhered to the PICOS (Population, Intervention, Comparator, Outcomes and Study type) framework, was conducted through PubMed, Google scholar, Dimensions, X-mol, and Semantic Scholar till December 2023. All types of studies reporting PDT in the management of CL with no language restriction were included.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!