Molecular ferroelectric with low-magnetic-field magnetoelectricity at room temperature.

Nat Commun

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Published: June 2024

Magnetoelectric materials, which encompass coupled magnetic and electric polarizabilities within a single phase, hold great promises for magnetic controlled electronic components or electric-field controlled spintronics. However, the realization of ideal magnetoelectric materials remains tough due to the inborn competion between ferroelectricity and magnetism in both levels of symmetry and electronic structure. Herein, we introduce a methodology for constructing single phase paramagnetic ferroelectric molecule [TMCM][FeCl], which shows low-magnetic-field magnetoelectricity at room temperature. By applying a low magnetic field (≤1 kOe), the halogen Cl‧‧‧Cl distance and the volume of [FeCl] anions could be manipulated. This structural change causes a characteristic magnetostriction hysteresis, resulting in a substantial deformation of ~10 along the a-axis under an in-plane magnetic field of 2 kOe. The magnetostrictive effect is further qualitatively simulated by density functional theory calculations. Furthermore, this mechanical deformation significantly dampens the ferroelectric polarization by directly influencing the overall dipole configuration. As a result, it induces a remarkable α component (~89 mV Oe cm) of the magnetoelectric tensor. And the magnetoelectric coupling, characterized by the change of polarization, reaches ~12% under 40 kOe magnetic field. Our results exemplify a design methodology that enables the creation of room-temperature magnetoelectrics by leveraging the potent effects of magnetostriction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148071PMC
http://dx.doi.org/10.1038/s41467-024-49053-yDOI Listing

Publication Analysis

Top Keywords

magnetic field
12
low-magnetic-field magnetoelectricity
8
magnetoelectricity room
8
room temperature
8
magnetoelectric materials
8
single phase
8
magnetic
5
molecular ferroelectric
4
ferroelectric low-magnetic-field
4
magnetoelectric
4

Similar Publications

Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).

Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Forward modeling the magnetic effects of an inferred source is the basis of magnetic anomaly inversion for estimating subsurface magnetization parameters. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the magnetic potential, anomaly, and gradient components of a cylindrical prism element. Relative to previous studies, it quantifies for the first time the magnetic gradient components, enabling their applications in the interpretation of cylindrical bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!