The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts. In this study, we determined the cryo-EM structure of the G-coupled QRFPR bound to 26RFa. The structure reveals a unique assembly mode of the extracellular region of the receptor and the N-terminus of the peptide, and elucidates the recognition mechanism of the C-terminal heptapeptide of 26RFa by the transmembrane binding pocket of QRFPR. The study also clarifies the similarities and distinctions in the binding pattern of the RF-amide moiety in five RF-amide peptides and the RY-amide segment in neuropeptide Y. These findings deepen our understanding of the RF-amide peptide recognition, aiding in the rational design of drugs targeting QRFPR and other RF-amide peptide receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148045PMC
http://dx.doi.org/10.1038/s41421-024-00670-3DOI Listing

Publication Analysis

Top Keywords

rf-amide peptide
16
peptide receptor
8
peptide recognition
8
peptide
7
rf-amide
6
qrfpr
6
structural basis
4
recognition
4
basis recognition
4
26rfa
4

Similar Publications

RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y receptor (YR).

View Article and Find Full Text PDF

Molecular mechanism of prolactin-releasing peptide recognition and signaling via its G protein-coupled receptor.

Cell Discov

September 2024

State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

Prolactin-releasing peptide (PrRP) is an RF-amide neuropeptide that binds and activates its cognate G protein-coupled receptor, prolactin-releasing peptide receptor (PrRPR), also known as GPR10. PrRP and PrRPR are highly conserved across mammals and involved in regulating a range of physiological processes, including stress response, appetite regulation, pain modulation, cardiovascular function, and potentially reproductive functions. Here we present cryo-electron microscopy structures of PrRP-bound PrRPR coupled to G or G heterotrimer, unveiling distinct molecular determinants underlying the specific recognition of the ligand's C-terminal RF-amide motif.

View Article and Find Full Text PDF

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known.

View Article and Find Full Text PDF

Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103.

Nat Commun

June 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.

Pyroglutamylated RF-amide peptide (QRFP) is a peptide hormone with a C-terminal RF-amide motif. QRFP selectively activates a class A G-protein-coupled receptor (GPCR) GPR103 to exert various physiological functions such as energy metabolism and appetite regulation. Here, we report the cryo-electron microscopy structure of the QRFP26-GPR103-G complex at 3.

View Article and Find Full Text PDF

The neuropeptide 26RFa, a member of the RF-amide peptide family, activates the pyroglutamylated RF-amide peptide receptor (QRFPR), a class A GPCR. The 26RFa/QRFPR system plays critical roles in energy homeostasis, making QRFPR an attractive drug target for treating obesity, diabetes, and eating disorders. However, the lack of structural information has hindered our understanding of the peptide recognition and regulatory mechanism of QRFPR, impeding drug design efforts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!