Aims: Early clinical studies have indicated that the pharmacokinetics of Atuliflapon (AZD5718) are time and dose dependent. The reason(s) for these findings is(are) not fully understood, but pre-clinical profiling suggests that time-dependent CYP3A4 inhibition cannot be excluded. In clinical practice, Atuliflapon will be co-administered with CYP3A4 substrates; thus, it is important to determine the impact of Atuliflapon on the pharmacokinetics (PK) of CYP3A4 substrates. The aim of this study was to evaluate the effect of Atuliflapon on the pharmacokinetics of a sensitive CYP3A4 substrate, midazolam, and to explore if the time-/dose-dependent effect seen after repeated dosing could be an effect of change in CYP3A4 activity.
Methods: Open-label, fixed-sequence study in healthy volunteers to assess the PK of midazolam alone and in combination with Atuliflapon. Fourteen healthy male subjects received single oral dose of midazolam 2 mg on days 1 and 7 and single oral doses of Atuliflapon (125 mg) from days 2 to 7. A physiologically based pharmacokinetic (PBPK) model was developed to assess this drug-drug interaction.
Results: Mean midazolam values of maximum plasma concentration (C) and area under the curve (AUC) to infinity were increased by 39% and 56%, respectively, when co-administered with Atuliflapon vs. midazolam alone. The PBPK model predicted a 27% and 44% increase in AUC and a 23% and 35% increase in C of midazolam following its co-administrations with two predicted therapeutically relevant doses of Atuliflapon.
Conclusions: Atuliflapon is a weak inhibitor of CYP3A4; this was confirmed by the validated PBPK model. This weak inhibition is predicted to have a minor PK effect on CYP3A4 metabolized drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bcp.16131 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development, Uppsala University, SE-75124 Uppsala, Sweden.
: N-acetyl-galactosamine small interfering RNAs (GalNAc-siRNA) are an emerging class of drugs due to their durable knockdown of disease-related proteins. Direct conjugation of GalNAc onto the siRNA enables targeted uptake into hepatocytes via GalNAc recognition of the Asialoglycoprotein Receptor (ASGPR). With a transient plasma exposure combined with a prolonged liver half-life, GalNAc-siRNA exhibits distinct disposition characteristics.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain.
Background/objectives: Colorectal cancer (CRC) holds the third and second position among cancers affecting men and women, respectively. Frequently, the first-line treatment for metastatic CRC consists of the intravenous administration of 5-fluorouracil and leucovorin in combination with oxaliplatin or irinotecan. Physiologically-based pharmacokinetic models (PBPK) aim to mechanistically incorporate body physiology and drug physicochemical attributes, enabling the description of both systemic and organ drug exposure based on the treatment specificities.
View Article and Find Full Text PDFPharmaceutics
December 2024
PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.
View Article and Find Full Text PDFArch Toxicol
January 2025
Scientist Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.
View Article and Find Full Text PDFIntroduction: Tuberculosis (TB) poses a significant threat to global health, with millions of new infections and approximately one million deaths annually. Various modeling efforts have emerged, offering tailored data-driven and physiologically-based solutions for novel and historical compounds. However, this diverse modeling panorama may lack consistency, limiting result comparability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!