Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transport of microplastics (MPs) from urban environments to water resources via stormwater runoff poses significant concerns due to its adverse impacts on water safety and aquatic ecosystems. This study presents a modeling approach aimed at understanding the transport mechanisms of MPs in an urban residential setting, considering settling and buoyant MPs. To consider the effect of MP shapes, the settling velocity of various settling MPs in shapes of fibers, films, and fragments was calculated. Using an analogy of sediment transport, a Rouse number criterion was used to analyze the transport of MPs. For buoyant MPs, it was assumed that they transport as wash-load as soon as they float in the water and the travel time for them to reach the storm drain was determined. The calculation of settling velocity revealed the influence of shape on the settling velocity of MPs was particularly pronounced as the equivalent diameter of the MPs increased. The transport mechanism for the smallest settling MPs, irrespective of their shapes, density, and depth of flow, was wash-load. However, for larger MPs, the shape and size distribution of settling MPs, along with the depth of flow and slope significantly influenced their transport mechanisms compared to sediment particles. The influence of weathering on the MPs' transport mechanisms depended on their sizes and shapes. The site-specific characteristics, including slope and surface friction, significantly influenced the velocity of stormwater runoff and, consequently, the extent of MP transport during rain events. Moreover, an evaluation of the transport mechanism of settling MPs was conducted using the reported field data on MP abundance in road dust collected from residential and traffic sites. This study underscores the complexity of MP transport dynamics and provides a foundation for developing targeted strategies to mitigate MP pollution in urban environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!