Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The rapidly increasing adoption of large language models in medicine has drawn attention to potential applications within the field of neurosurgery. This study evaluates the effects of various contextualization methods on ChatGPT's ability to provide expert-consensus aligned recommendations on the diagnosis and management of Chiari Malformation and Syringomyelia.
Methods: Native GPT4 and GPT4 models contextualized using various strategies were asked questions revised from the 2022 Chiari and Syringomyelia Consortium International Consensus Document. ChatGPT-provided responses were then compared to consensus statements using reviewer assessments of 1) responding to the prompt, 2) agreement of ChatGPT response with consensus statements, 3) recommendation to consult with a medical professional, and 4) presence of supplementary information. Flesch-Kincaid, SMOG, word count, and Gunning-Fog readability scores were calculated for each model using the quanteda package in R.
Results: Relative to GPT4, all contextualized GPTs demonstrated increased agreement with consensus statements. PDF+Prompting and Prompting models provided the most elevated agreement scores of 19 of 24 and 23 of 24, respectively, versus 9 of 24 for GPT4 (p=.021, p=.001). A trend toward improved readability was observed when comparing contextualized models at large to ChatGPT4, with significant decreases in average word count (180.7 vs 382.3, p<.001) and Flesch-Kincaid Reading Ease score (11.7 vs 17.2, p=.033).
Conclusions: The enhanced performance observed in response to ChatGPT4 contextualization suggests broader applications of large language models in neurosurgery than what the current literature indicates. This study provides proof of concept for the use of contextualized GPT models in neurosurgical contexts and showcases the easy accessibility of improved model performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2024.05.172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!