A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Diagnostic Support for Chiari Malformation and Syringomyelia: A Comparative Study of Contextualized ChatGPT Models. | LitMetric

AI Article Synopsis

  • This study assesses how different contextualization methods impact ChatGPT's ability to provide medical recommendations for Chiari Malformation and Syringomyelia.
  • Contextualized versions of GPT-4 showed significantly improved agreement with expert consensus statements compared to the standard GPT-4 model, indicating that they offered more valid medical advice.
  • Results also highlighted increased readability and reduced word count in the contextualized models, suggesting better communication of complex medical information.

Article Abstract

Objectives: The rapidly increasing adoption of large language models in medicine has drawn attention to potential applications within the field of neurosurgery. This study evaluates the effects of various contextualization methods on ChatGPT's ability to provide expert-consensus aligned recommendations on the diagnosis and management of Chiari Malformation and Syringomyelia.

Methods: Native GPT4 and GPT4 models contextualized using various strategies were asked questions revised from the 2022 Chiari and Syringomyelia Consortium International Consensus Document. ChatGPT-provided responses were then compared to consensus statements using reviewer assessments of 1) responding to the prompt, 2) agreement of ChatGPT response with consensus statements, 3) recommendation to consult with a medical professional, and 4) presence of supplementary information. Flesch-Kincaid, SMOG, word count, and Gunning-Fog readability scores were calculated for each model using the quanteda package in R.

Results: Relative to GPT4, all contextualized GPTs demonstrated increased agreement with consensus statements. PDF+Prompting and Prompting models provided the most elevated agreement scores of 19 of 24 and 23 of 24, respectively, versus 9 of 24 for GPT4 (p=.021, p=.001). A trend toward improved readability was observed when comparing contextualized models at large to ChatGPT4, with significant decreases in average word count (180.7 vs 382.3, p<.001) and Flesch-Kincaid Reading Ease score (11.7 vs 17.2, p=.033).

Conclusions: The enhanced performance observed in response to ChatGPT4 contextualization suggests broader applications of large language models in neurosurgery than what the current literature indicates. This study provides proof of concept for the use of contextualized GPT models in neurosurgical contexts and showcases the easy accessibility of improved model performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2024.05.172DOI Listing

Publication Analysis

Top Keywords

consensus statements
12
chiari malformation
8
word count
8
models
5
enhancing diagnostic
4
diagnostic support
4
support chiari
4
malformation syringomyelia
4
syringomyelia comparative
4
comparative study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!