Ethnopharmacological Relevance: Saposhnikoviae Radix (SR) was initially documented in Shennong Bencao Jing classics for its properties in dispelling wind, dissolving surface, relieving pain, and alleviating spasms. This herb is commonly used in traditional Chinese medicine to address conditions that affect the body's surface, by aiding in the expulsion of pathogens from the surface and alleviating pain associated with the immune response. Atopic dermatitis (AD) is a prevalent allergic skin disorder, and the therapeutic effects of SR in dispelling wind and relieving the body's surface are consistent with the clinical symptoms commonly observed in AD.

Aim Of The Study: The anti-AD effects of SR were examined under three different growth patterns to identify active pharmacodynamic compounds. The results provide insight into the clinical efficacy of wild and cultivated SR.

Materials And Methods: The efficacy of wild, wild-simulated, and cultivated SR was assessed in a mouse model of AD. In addition, the effects of wild and varying doses of cultivated SR were evaluated in mice with short-term AD symptoms. GC-MS and UPLC-MS/MS were used to analyze the chemical components of the three SR treatments and molecular docking was used to identify active components.

Results: A mouse model of AD was used to assess the pharmacodynamic effects of SR prepared by three different cultivation methods. The study found that all three SR preparations improved phenotypic markers and histopathological features in the AD mouse model. The efficacy of wild SR and wild-simulated SR was similar, although there was a significant difference between wild and cultivated SR. Both wild SR and various doses of cultivated SR ameliorated skin injuries and reduced inflammation in serum and skin tissues. Furthermore, skin thickness, inflammatory cells, mast cell infiltration, and IL-33 expression improved following treatment. Notably, wild SR, double-cultivated SR, and triple-cultivated SR demonstrated significant therapeutic effects. An analysis using GC-MS revealed the presence of 55, 52, and 43 volatile oils in the three SR preparations, with more common components observed between wild and wild-simulated SR. Fewer common components were evident between cultivated and wild SR. UPLC-MS/MS analysis identified a total of 37 compounds, with larger relative peak areas observed for the chromogenic ketones. Molecular docking studies revealed that certain compounds, such as n-propyl 9,12-octadecadienoate, (E)-9-octadecenoic acid ethyl ester, and various chromogenic ketones, such as cimifugin, 5-O-methyIvisamminol, hamaudol, 3'-O-acetylhamaudol, 3'-O-angeloyhamandol, adenosine and farnesylaceton, may be the major substances that distinguish the activities of SR with three different growth patterns.

Conclusion: Variations in the anti-AD efficacy of SR with three growth patterns were identified, and their chemical composition differences were determined. These findings suggest that increasing the dosage of cultivated SR could potentially be a viable clinical alternative for atopic dermatitis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118417DOI Listing

Publication Analysis

Top Keywords

three growth
16
growth patterns
12
atopic dermatitis
12
efficacy wild
12
wild wild-simulated
12
mouse model
12
wild
9
saposhnikoviae radix
8
three
8
dispelling wind
8

Similar Publications

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis.

Cell Rep

January 2025

Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.

View Article and Find Full Text PDF

Comparison of Coconut and Sunflower Seed Oils in Improving the Skin Integrity and Weight Gain of Infants in the Neonatal ICU.

Adv Skin Wound Care

January 2025

Öznur Tiryaki, PhD, RN, is Associate Professor, Faculty of Health Sciences, Department of Midwifery, Sakarya University, Sakarya, Turkey. Hamide Zengin, PhD, RN, is Associate Professor, Faculty of Health Science, Department of Pediatric Nursing, Eskişehir Osmangazi University, Eskişehir, Turkey. Also at Sakarya University, Nursan Çınar, PhD, RN, is Professor, Faculty of Health Sciences, Department of Pediatric Nursing; Meltem Karabay, MD, is Associate Professor, Faculty of Medicine, Research and Training Hospital of Sakarya, Division of Neonatology, Department of Pediatrics; İbrahim Caner, MD, is Professor, Faculty of Medicine, Research and Training Hospital of Sakarya, Division of Neonatology, Department of Pediatrics; and Ertuğrul Güçlü, MD, is Professor, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology.

Objective: To determine the effects of sunflower seed oil and coconut oil on the skin integrity and weight gain of preterm infants in the neonatal ICU.

Methods: In this randomized controlled trial, 66 preterm neonates (34-37 weeks' gestation) in the neonatal ICU of a training and research hospital were equally divided into three groups: sunflower seed oil, coconut oil, and control. The weights of neonates in all three groups were measured at admission to the neonatal ICU, at discharge, and at 1 month postdischarge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!