Time-domain diffuse optical imaging technique for monitoring rheumatoid arthritis disease activity: experimental validation in tissue-mimicking finger phantoms.

Phys Med Biol

School of Biomedical Engineering, Western University and Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, Western University, 1151 Richmond St., London, Canada.

Published: June 2024

AI Article Synopsis

  • * Time-domain diffuse optical imaging (TD-DOI) could provide a more sensitive method for detecting changes in RA disease activity and treatment failure than current monitoring techniques.
  • * A TD-DOI hand imaging system was developed and validated using models that mimic finger joints, showing its potential to distinguish between different levels of RA disease activity and monitor patients over time for early treatment failure.

Article Abstract

Effective treatment within 3-5 months of disease onset significantly improves rheumatoid arthritis (RA) prognosis. Nevertheless, 30% of RA patients fail their first treatment, and it takes 3-6 months to identify failure with current monitoring techniques. Time-domain diffuse optical imaging (TD-DOI) may be more sensitive to RA disease activity and could be used to detect treatment failure. In this report, we present the development of a TD-DOI hand imaging system and validate its ability to measure simulated changes in RA disease activity using tissue-mimicking finger phantoms.A TD-DOI system was built, based on a single-pixel camera architecture, and used to image solid phantoms which mimicked a proximal interphalangeal finger joint. For reference,images of virtual models of the solid phantoms were also generated using Monte Carlo simulations. Spatiotemporal Fourier components were extracted from both simulated and experimental images, and their ability to distinguish between phantoms representing different RA disease activity was quantified.Many spatiotemporal Fourier components extracted from TD-DOI images could clearly distinguish between phantoms representing different states of RA disease activity.A TD-DOI system was built and validated using finger-mimicking solid phantoms. The findings suggest that the system could be used to monitor RA disease activity. This single-pixel TD-DOI system could be used to acquire longitudinal measures of RA disease activity to detect early treatment failure.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad53a0DOI Listing

Publication Analysis

Top Keywords

disease activity
24
td-doi system
12
solid phantoms
12
time-domain diffuse
8
diffuse optical
8
optical imaging
8
rheumatoid arthritis
8
disease
8
tissue-mimicking finger
8
activity detect
8

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!