The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones. The role of cytoskeletal elements in shaping the coenocytic endosperm and influencing seed growth also becomes evident. This review offers a recent understanding of the molecular and cellular dynamics in coenocytic endosperm development and their contributions to the final seed size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2024.102566 | DOI Listing |
Rice (N Y)
October 2024
College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
The yield potential of large-panicle rice is often limited by grain-filling barriers caused by the development of inferior spikelets (IS). Photoassimilates, which are the main source of rice grain filling, mainly enter the caryopsis through the dorsal vascular bundle. The distribution of assimilates between superior spikelets (SS) and IS is influenced by auxin-mediated apical dominance; however, the mechanism involved is still unclear.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2024
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA. Electronic address:
The endosperm, a product of double fertilization, is one of the keys to the evolution and success of angiosperms in conquering the land. While there are differences in endosperm development among flowering plants, the most common form is coenocytic growth, where the endosperm initially undergoes nuclear division without cytokinesis and eventually becomes cellularized. This complex process requires interplay among networks of transcription factors such as MADS-box, auxin response factors (ARFs), and phytohormones.
View Article and Find Full Text PDFResults Probl Cell Differ
November 2023
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
In animals and plants, multinucleate cells (syncytia and coenocytes) are essential in ontogeny and reproduction. Fuso-morphogenesis is the formation of multinucleated syncytia by cell-cell fusion, but coenocytes are formed as a result of mitosis without cytokinesis. However, in plants, coenocytes are more widespread than true syncytia.
View Article and Find Full Text PDFNat Plants
February 2023
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
After double fertilization, the endosperm in the seeds of many flowering plants undergoes repeated mitotic nuclear divisions without cytokinesis, resulting in a large coenocytic endosperm that then cellularizes. Growth during the coenocytic phase is strongly associated with the final seed size; however, a detailed description of the cellular dynamics controlling the unique coenocytic development in flowering plants has remained elusive. By integrating confocal microscopy live-cell imaging and genetics, we have characterized the entire development of the coenocytic endosperm of Arabidopsis thaliana including nuclear divisions, their timing intervals, nuclear movement and cytoskeleton dynamics.
View Article and Find Full Text PDFPlant Mol Biol
February 2023
State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China.
Here we provided a high temporal-resolution transcriptome atlas of maize embryo sac and ovule to reveal the gene activity dynamic during early seed development. The early maize (Zea mays) seed development is initiated from double fertilization in the embryo sac and needs to undergo a highly dynamic and complex development process to form the differentiated embryo and endosperm. Despite the importance of maize seed for food, feed, and biofuel, many regulators responsible for controlling its early development are not known yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!