Ovarian cancer is the most lethal gynecologic cancer in developed countries. In the tumor microenvironment, the extracellular matrix (ECM) and flow shear stress are key players in directing ovarian cancer cells invasion. Artificial ECM models based only on ECM proteins are used to build an ovarian tumor-on-chip to decipher the crosstalk between ECM and shear stress on the migratory behavior and cellular heterogeneity of ovarian tumor cells. This work shows that in the shear stress regime of the peritoneal cavity, the ECM plays a major role in driving individual or collective ovarian tumor cells migration. In the presence of basement membrane proteins, migration is more collective than on type I collagen regardless of shear stress. With increasing shear stress, individual cell migration is enhanced; while, no significant impact on collective migration is measured. This highlights the central position that ECM and flow shear stress should hold in in vitro ovarian cancer models to deepen understanding of cellular responses and improve development of ovarian cancer therapeutic platforms. In this frame, adding flow provides significant improvement in biological relevance over the authors' previous work. Further steps for enhanced clinical relevance require not only multiple cell lines but also patient-derived cells and sera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202400938 | DOI Listing |
Basic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.
Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.
View Article and Find Full Text PDFSci Rep
January 2025
Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, F-67065, France.
Different approaches are being developed to efficiently produce in vitro platelets from cultured megakaryocytes to meet the constant demand of platelet transfusion and serve for research purposes. Recent works have shown that turbulence and periodic stress can significantly enhance platelet yield. Here we have developed and characterized a platelet production device that takes in account these properties.
View Article and Find Full Text PDFOrthop Traumatol Surg Res
January 2025
Department of orthopedic surgery, Clinique du Sport, 36 Boulevard Saint-Marcel, 75005 Paris, France.
Background: Many techniques have been described for lateral ankle ligament reconstruction. Although the biomechanical properties of gracilis tendons are different from those of ligaments, the use of a gracilis tendon autograft is a popular option for anatomical reconstruction. Graft maturation and the biomechanical processes over time remain unclear.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China. Electronic address:
Background And Objective: In clinical practice, valve-sparing aortic root replacement surgery primarily addresses left ventricular dysfunction in patients due to severe aortic regurgitation, but there is controversy regarding the choice of surgical technique. In order to investigate which type of valve-sparing aortic root replacement surgeries can achieve better blood flow conditions, this study examines the impact of changes in the geometric morphology of the aortic root on the hemodynamic environment through numerical simulation.
Methods: An idealized model of the aortic root was established based on data obtained from clinical measurements, including using the model of the aortic root without significant lesions as the control group (Model C), while using surgical models of leaflet reimplantation with tubular graft (Model T), leaflet reimplantation with Valsalva graft (Model V), and the Florida sleeve procedure (Model F) as the experimental groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!