The computational efficiency of low-cost electronic structure methods can be further improved by leveraging heterogenous computing architectures. The software package TeraChem has been developed since 2008 to make use of graphical processing units (GPUs), particularly their strong single-precision performance, for the acceleration of quantum chemical calculations. Here, we present the implementation of three low-cost methods, namely HF-3c, PBEh-3c, and the recently introduced ωB97X-3c. We show that these can benefit in terms of performance when combined with "consumer grade" GPUs by leveraging the mixed precision integral handling in TeraChem. The current limitation of the latter's GPU integral library is that Gaussian integrals only for functions with angular momentum < 3 can be computed, which generally restricts the achievable accuracy in terms of the one-particle basis set. Particularly, the implementation of the ωB97X-3c method now enables higher accuracy with this setting which, in turn, provides the most efficient implementation accessible with consumer-grade hardware. We furthermore show that the implemented 3c methods can be combined with the hh-TDA formalism. This gives new and efficient low-cost multi-configurational excited states methods, which are benchmarked for the description of lowest vertical excitation energies in this work. All in all, the combination of these efficient electronic structure theory methods with affordable highly parallelized computing hardware provides an optimal computational and monetary cost to accuracy ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp06086a | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China.
Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFSmall
January 2025
School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, P. R. China.
Multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters have garnered significant interest due to their narrow full width at half maximum (FWHM) and high electroluminescence efficiency. However, the planar structures and large singlet-triplet energy gaps (ΔEs) characteristic of MR-TADF molecules pose challenges to achieving high-performance devices. Herein, two isomeric compounds, p-TPS-BN and m-TPS-BN, are synthesized differing in the connection modes between a bulky tetraphenylsilane (TPS) group and an MR core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!