Measurement of Small Photon Numbers in Circuit QED Resonators.

Phys Rev Lett

Google Quantum AI, Santa Barbara, California 93111, USA.

Published: May 2024

Off-resonant interaction of fluctuating photons in a resonator with a qubit increases the qubit dephasing rate. We use this effect to measure a small average number of intracavity photons that are coherently or thermally driven. For spectral resolution, we do this by subjecting the qubit to a Carr-Purcell-Meiboom-Gill sequence and record the qubit dephasing rate for various periods between qubit π pulses. The recorded data is then analyzed with formulas for the photon-induced dephasing rate derived for the non-Gaussian noise regime with an arbitrary ratio of the resonator dispersive shift to decay rate. We show that the presented Carr-Purcell-Meiboom-Gill dephasing rate formulas agree well with experimental results and demonstrate measurement of thermal and coherent photon populations at the level of a few 10^{-4}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.203601DOI Listing

Publication Analysis

Top Keywords

dephasing rate
16
qubit dephasing
8
qubit
5
rate
5
measurement small
4
small photon
4
photon numbers
4
numbers circuit
4
circuit qed
4
qed resonators
4

Similar Publications

In this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.

View Article and Find Full Text PDF

We report photon-phonon dressing quantization dependency on polarization. Destructive dressing polarization quantization is exhibited in fluorescence (FL) for narrowband signals, while constructive dominant dressing quantization is exhibited in fluorescence (FL) for broadband signals due to phase perturbation. Furthermore, constructive polarization quantization results due to coexistence of generation and dressing effects in strong and competitive Rabi frequency.

View Article and Find Full Text PDF

Dependence of brain-tissue R on MRI field strength.

Magn Reson Med

December 2024

Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.

Purpose: To quantify T relaxation in the brain at 3 T and 7 T to study its field dependence and correlation with iron content, and to investigate whether iron can be separated from other sources of T relaxation based on this field dependence.

Methods: Nine subjects were scanned at both field strengths with the same acquisition technique, which used multiple gradient-echo sampling of a spin echo. This allowed for separation of T relaxation from static dephasing by B field inhomogeneities and the effects of radiofrequency refocusing imperfections.

View Article and Find Full Text PDF

We present femtosecond pump-probe measurements of neutral and charged exciton optical response in monolayer MoSe to resonant photoexcitation of a given exciton state in the presence of 2D electron gas. We show that creation of charged exciton (X) population in a given K, K valley requires the capture of available free carriers in the opposite valley and reduces the interaction of neutral exciton (X) with the electron Fermi sea. We also observe spectral broadening of the X transition line with the increasing X population caused by efficient scattering and excitation induced dephasing.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!