We analyze the flow physics inside the body cavity and downstream the deep-sea glass sponge Euplectella aspergillum. We provide evidence that the helical skeletal motifs of the sponge give rise to a rich fluid dynamic field, allowing the organism to scavenge flow from the bottom of the sea and promoting a spontaneous, organized vertical flow within its body cavity toward the osculum. Our analysis points at a functional adaptation of the organism, which can passively divert flow through the osculum in unfavorable, low ambient currents, with no need for active pumping, with potential repercussions in functional ecology, as well as the design of chemical reactors, air-treatment units, and civil and aeronaval structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.208402 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.
View Article and Find Full Text PDFAstrobiology
December 2024
Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan.
ISME J
January 2024
Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW 2052, Australia.
The basal metazoan phylum Porifera (sponges) is increasingly used as a model to investigate ecological and evolutionary features of microbe-animal symbioses. However, sponges often host complex microbiomes, which has hampered our understanding of their interactions with their microbial symbionts. Here, we describe the discovery and characterization of the simplest sponge holobiont reported to date, consisting of the deep-sea glass sponge Aphrocallistes beatrix and two newly-described microbial symbionts: an autotrophic ammonia-oxidizing archaeon and a bacterial heterotroph.
View Article and Find Full Text PDFNPJ Biodivers
May 2024
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
The increase in interest of mining at seamounts means there is a critical need to establish baseline inventories through environmental survey, with the aim of promoting the conservation and stewardship of these remote habitats. To efficiently evaluate fish biodiversity around a seamount, we compared environmental DNA (eDNA) methods using seawater and sponge samples against methods using imagery obtained with a remotely operated vehicle (ROV) and a free-fall deep-sea camera lander called the Edokko Mark I on the Takuyo-Daigo Seamount (153.0°E, 23.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2024
Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126, Cagliari, Italy.
This study provides new insights onto spatial and temporal trends of seafloor macro-litter in the abyssal seafloor of Sardinian channel, in central western Mediterranean (Italy). Trawl surveys were conducted at depths between 884 and 1528 m, thus focusing on one of the least investigated marine environments. None of the considered sites was litter free, with plastics being numerically dominant (57% of items), followed by metal (11%) and glass (16%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!