Emitter dephasing is one of the key issues in the performance of solid-state single-photon sources. Among the various sources of dephasing, acoustic phonons play a central role in adding decoherence to the single-photon emission. Here, we demonstrate that it is possible to tune and engineer the coherence of photons emitted from a single WSe_{2} monolayer quantum dot via selectively coupling it to a spectral cavity resonance. We utilize an open cavity to demonstrate spectral enhancement, leveling, and suppression of the highly asymmetric phonon sideband, finding excellent agreement with a microscopic description of the exciton-phonon dephasing in a truly two-dimensional system. Moreover, the impact of cavity tuning on the dephasing is directly assessed via optical interferometry, which points out the capability to utilize light-matter coupling to steer and design dephasing and coherence of quantum emitters in atomically thin crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.206903 | DOI Listing |
Nanophotonics
June 2024
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
Exciton-polariton condensates, due to their nonlinear and coherent characteristics, have been employed to construct spin Hamiltonian lattices for potentially studying spin glass, critical dephasing, and even solving optimization problems. Here, we report the room-temperature polariton condensation and polaritonic soft-spin XY Hamiltonian lattices in an organic-inorganic halide perovskite microcavity. This is achieved through the direct integration of high-quality single-crystal samples within the cavity.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Department of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
J Chem Phys
November 2024
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
Chemphyschem
November 2024
Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark.
Retinal protonated Schiff base (RPSB), found in its all-trans conformer in Bacteriorhodopsin, undergoes barrier-controlled isomerization upon photoabsorption through polyene chain torsion. The effects of the protein environment on the active vibrations during photoabsorption and their redistribution are still not understood. This paper reports on femtosecond time-resolved action-absorption measurements of cryogenically cooled gas-phase all-trans RPSB, which exhibit two coherent vibrational oscillations, 167(14) cm and 117(1) cm , of the first excited state with dephasing times of ps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!