In order to determine the structural relaxation time of a polymer glass during deformation, a strain rate switching experiment is performed in the steady-state plastic flow regime. A lightly cross-linked poly(methylmethacrylate) glass was utilized and, simultaneously, the segmental motion in the glass was quantified using an optical probe reorientation method. After the strain rate switch, a nonmonotonic stress response is observed, consistent with previous work. The correlation time for segmental motion, in contrast, monotonically evolves toward a new steady state, providing an unambiguous measurement of the structural relaxation time during deformation, which is found to be approximately equal to the segmental correlation time. The Chen-Schweizer model qualitatively predicts the changes in the segmental correlation time and the observed nonmonotonic stress response. In addition, our experiments are reasonably consistent with the material time assumption used in polymer deformation modeling; in this approach, the response of a polymer glass to a large deformation is described by combining a linear-response model with a time-dependent segmental correlation time.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.208101DOI Listing

Publication Analysis

Top Keywords

correlation time
16
structural relaxation
12
relaxation time
12
polymer glass
12
segmental correlation
12
time
8
time polymer
8
glass deformation
8
strain rate
8
segmental motion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!