Gate-Controlled Anyon Generation and Detection in Kitaev Spin Liquids.

Phys Rev Lett

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Quantum Science Center, Oak Ridge, Tennessee 37831, USA.

Published: May 2024

Reliable manipulation of non-Abelian Ising anyons supported by Kitaev spin liquids may enable intrinsically fault-tolerant quantum computation. Here, we introduce a standalone scheme for both generating and detecting individual Ising anyons using tunable gate voltages in a heterostructure containing a non-Abelian Kitaev spin liquid and a monolayer semiconductor. The key ingredients of our setup are a Kondo coupling to stabilize an Ising anyon in the spin liquid around each electron in the semiconductor, and a large charging energy to allow control over the electron numbers in distinct gate-defined regions of the semiconductor. In particular, a single Ising anyon can be generated at a disk-shaped region by gate tuning its electron number to one, while it can be interferometrically detected by measuring the electrical conductance of a ring-shaped region around it whose electron number is allowed to fluctuate between zero and one. We provide concrete experimental guidelines for implementing our proposal in promising candidate materials like α-RuCl_{3}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.206501DOI Listing

Publication Analysis

Top Keywords

kitaev spin
12
spin liquids
8
ising anyons
8
spin liquid
8
ising anyon
8
electron number
8
gate-controlled anyon
4
anyon generation
4
generation detection
4
detection kitaev
4

Similar Publications

Review of honeycomb-based Kitaev materials with zigzag magnetic ordering.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

The search for a Kitaev quantum spin liquid in crystalline magnetic materials has fueled intense interest in the two-dimensional honeycomb systems. Many promising candidate Kitaev systems are characterized by a long-range-ordered magnetic structure with an antiferromagnetic zigzag-type order, where the static moments form alternating ferromagnetic chains. Recent experiments on high-quality single crystals uncovered the existence of intriguing multi-k magnetic structures, which evolved from zigzag structures.

View Article and Find Full Text PDF

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.

View Article and Find Full Text PDF

The nonintegrable higher spin Kitaev honeycomb model has an exact Z_{2} gauge structure, which exclusively identifies quantum spin liquid in the half-integer spin Kitaev model. But its constraints for the integer-spin Kitaev model are much limited, and even trivially gapped insulators cannot be excluded. The physical implications of exact Z_{2} gauge structure, especially Z_{2} fluxes, in integer-spin models remain largely unexplored.

View Article and Find Full Text PDF

Vacancies in Generic Kitaev Spin Liquids.

Phys Rev Lett

November 2024

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

The Kitaev honeycomb model supports gapless and gapped quantum spin liquid phases. Its exact solvability relies on extensively many locally conserved quantities. Any real-world manifestation of these phases would include imperfections in the form of disorder and interactions that break integrability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!