Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)--poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.4c00200DOI Listing

Publication Analysis

Top Keywords

membraneless organelles
16
featuring membrane-bound
8
membrane-bound membraneless
8
organelles
5
protocells featuring
4
membrane-bound
4
membrane-bound dynamic
4
membraneless
4
dynamic membraneless
4
organelles living
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!