Introduction: Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients.
Aims: The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients.
Results: PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4 and CD8 T cells was partly reversed, and the capacity of CD8 T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy.
Conclusions: Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145367 | PMC |
http://dx.doi.org/10.1111/cns.14784 | DOI Listing |
J Am Chem Soc
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.
Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.
View Article and Find Full Text PDFCancers (Basel)
December 2024
BC Cancer, Vancouver Center, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada.
Background/objectives: Pembrolizumab monotherapy is approved in Canada for first-line treatment of advanced NSCLC with PD-L1 ≥ 50% and no EGFR/ALK aberrations. However, approximately 55% of these patients do not respond to pembrolizumab, underscoring the need for the early intervention of non-responders to optimize treatment strategies. Distinguishing the 55% sub-cohort prior to treatment is a real-world dilemma.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.
Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:
Objective: Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!