Purpose: We have developed a bone-dedicated collimator with higher sensitivity but slightly degraded resolution on single-photon emission computed tomography (SPECT) for planar bone scintigraphy, compared with conventional low-energy high-resolution collimator. In this work, we investigated the feasibility of using the blind deconvolution algorithm to improve the resolution of planar images on bone scintigraphy.

Materials And Methods: Monte Carlo simulation was performed with the NCAT phantom for modeling bone scintigraphy on the clinical dual-head SPECT scanner (Imagine NET 632, Beijing Novel Medical Equipment Ltd.) equipped with the bone-dedicated collimator. Maximum likelihood estimation method was used for the blind deconvolution algorithm. The initial estimation of point spread function (PSF) and iteration number for the method were determined by comparing the deblurred images obtained from different input parameters. We simulated different tumors in five different locations and with five different diameters to evaluate the robustness of the initial inputs. Furthermore, we performed chest phantom studies on the clinical SPECT scanner. The quantified increased contrast ratio (CR) between the tumor and the background was evaluated.

Results: The 2 mm PSF kernel and 10 iterations provided a practical and robust deblurred image on our system. Those two inputs can generate robust deblurred images in terms of the tumor location and size with an average increased CR of 21.6%. The phantom studies also demonstrated the ability of blind deconvolution, using those two inputs, with increased CRs of 17%, 17%, 22%, 20%, and 13% for lesions with diameters of 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm, respectively.

Conclusions: It is feasible to use the blind deconvolution algorithm to deblur the planar images for SPECT bone scintigraphy. The appropriate values of the PSF kernel and the iteration number for the blind deconvolution can be determined using simulation studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141745PMC
http://dx.doi.org/10.4103/jmp.jmp_127_23DOI Listing

Publication Analysis

Top Keywords

blind deconvolution
24
deconvolution algorithm
16
planar images
12
bone scintigraphy
12
single-photon emission
8
emission computed
8
computed tomography
8
bone-dedicated collimator
8
spect scanner
8
iteration number
8

Similar Publications

Current deep learning-based phase unwrapping techniques for iToF Lidar sensors focus mainly on static indoor scenarios, ignoring motion blur in dynamic outdoor scenarios. Our paper proposes a two-stage semi-supervised method to unwrap ambiguous depth maps affected by motion blur in dynamic outdoor scenes. The method trains on static datasets to learn unwrapped depth map prediction and then adapts to dynamic datasets using continuous learning methods.

View Article and Find Full Text PDF

Optical-resolution photoacoustic microscopy enables cellular-level biological imaging in deep tissues. However, acquiring high-quality spatial images without knowing the point spread function (PSF) at multiple depths or physically improving system performance is challenging. We propose an adaptive multi-layer photoacoustic image fusion (AMPIF) approach based on blind deconvolution and registration.

View Article and Find Full Text PDF

Background: Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response.

Methods: In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA).

View Article and Find Full Text PDF

Multi-frame blind deconvolution using X-ray microscope images of an in-plane rotating sample.

Sci Rep

November 2024

Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.

We propose a multi-frame blind deconvolution method using an in-plane rotating sample optimized for X-ray microscopy, where the application of existing deconvolution methods is technically difficult. Untrained neural networks are employed as the reconstruction algorithm to enable robust reconstruction against stage motion errors caused by the in-plane rotation of samples. From demonstration experiments using full-field X-ray microscopy with advanced Kirkpatrick-Baez mirror optics at SPring-8, a spatial resolution of 34 nm (half period) was successfully achieved by removing the wavefront aberration and improving the apparent numerical aperture.

View Article and Find Full Text PDF

This Letter investigates the influence of source motion on the performance of the ray-based blind deconvolution algorithm (RBD). RBD is used to estimate channel impulse responses and source signals from opportunistic sources such as shipping vessels but was derived under a stationary source assumption. A theoretical correction for Doppler from a simplified moving source model is used to quantify the biases in estimated arrival angles and travel times from RBD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!