Our research aimed to determine an optimal cutoff value and investigate the prognostic predictive function of Ki-67. We retrospectively enrolled 1146 patients diagnosed with stage I-II triple-negative breast cancer. Disease-free and overall survival were analyzed using the Kaplan-Meier method and the Cox regression model. We classified Ki-67 >45% as the high group (n = 716). A Ki-67 level of >45% was associated with poorer disease-free survival (p = 0.039) and overall survival (p = 0.029). Lymph node stage, neoadjuvant chemotherapy, and radiotherapy were independent predictive variables of prognosis. Triple-negative breast cancer may be further subcategorized according to the Ki-67 level. Neoadjuvant chemotherapy and postoperative radiotherapy can improve the prognosis of early triple-negative breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140645 | PMC |
http://dx.doi.org/10.2144/fsoa-2023-0129 | DOI Listing |
J Transl Med
January 2025
Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).
Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.
Metastatic triple-negative breast cancer has a poor prognosis and poses significant therapeutic challenges. Until recently, limited therapeutic options have been available for patients with advanced disease after failure of first-line chemotherapy. The aim of this review is to assess the current evidence supporting second-line treatment options in patients with metastatic triple-negative breast cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510120, China.
The study explored the pathological mechanism of doxorubicin chemotherapy-induced neurotoxicity and the intervention methods of traditional Chinese medicine. BALB/c mice were selected to establish tumor-bearing mouse models by orthotopic injection of 4T1 triple-negative breast cancer cells. After randomization, the mice were treated with doxorubicin chemotherapy or doxorubicin chemotherapy + Kaixin San(KXS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!