Purpose: Automated machine learning (AutoML) has emerged as a novel tool for medical professionals lacking coding experience, enabling them to develop predictive models for treatment outcomes. This study evaluated the performance of AutoML tools in developing models predicting the success of pneumatic retinopexy (PR) in treatment of rhegmatogenous retinal detachment (RRD). These models were then compared with custom models created by machine learning (ML) experts.

Design: Retrospective multicenter study.

Participants: Five hundred and thirty nine consecutive patients with primary RRD that underwent PR by a vitreoretinal fellow at 6 training hospitals between 2002 and 2022.

Methods: We used 2 AutoML platforms: MATLAB Classification Learner and Google Cloud AutoML. Additional models were developed by computer scientists. We included patient demographics and baseline characteristics, including lens and macula status, RRD size, number and location of breaks, presence of vitreous hemorrhage and lattice degeneration, and physicians' experience. The dataset was split into a training (n = 483) and test set (n = 56). The training set, with a 2:1 success-to-failure ratio, was used to train the MATLAB models. Because Google Cloud AutoML requires a minimum of 1000 samples, the training set was tripled to create a new set with 1449 datapoints. Additionally, balanced datasets with a 1:1 success-to-failure ratio were created using Python.

Main Outcome Measures: Single-procedure anatomic success rate, as predicted by the ML models. F2 scores and area under the receiver operating curve (AUROC) were used as primary metrics to compare models.

Results: The best performing AutoML model (F2 score: 0.85; AUROC: 0.90; MATLAB), showed comparable performance to the custom model (0.92, 0.86) when trained on the balanced datasets. However, training the AutoML model with imbalanced data yielded misleadingly high AUROC (0.81) despite low F2-score (0.2) and sensitivity (0.17).

Conclusions: We demonstrated the feasibility of using AutoML as an accessible tool for medical professionals to develop models from clinical data. Such models can ultimately aid in the clinical decision-making, contributing to better patient outcomes. However, outcomes can be misleading or unreliable if used naively. Limitations exist, particularly if datasets contain missing variables or are highly imbalanced. Proper model selection and data preprocessing can improve the reliability of AutoML tools.

Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141253PMC
http://dx.doi.org/10.1016/j.xops.2024.100470DOI Listing

Publication Analysis

Top Keywords

machine learning
12
automl
9
models
9
automated machine
8
pneumatic retinopexy
8
tool medical
8
medical professionals
8
google cloud
8
cloud automl
8
training set
8

Similar Publications

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!