Meteorin-β (Metrnβ) is a protein that is secreted by skeletal muscle and adipose tissue, and participates in cardiovascular diseases. However, its role in myocardial infarction (MI) has not been fully elucidated to date. The aim of the present study was to investigate the role and underlying mechanism of Metrnβ in MI. In the present study, mice were subjected to left coronary ligation to induce a MI model before being injected with adeno-associated virus 9 (AAV9)-Metrnβ to overexpress Metrnβ. Mice were subjected to echocardiography and pressure-volume measurements 2 weeks after ligation. Cardiac injury was measured from the levels of cardiac troponin T and pro-inflammatory factors, which were detected using ELISA kits. Cardiac remodelling was determined from the cross-sectional areas detected using H&E and wheat germ agglutinin staining as well as from the transcriptional levels of hypertrophic and fibrosis markers detected using reverse transcription-quantitative PCR. Cardiac function was detected using echocardiography and pressure-volume measurements. In addition, H9c2 cardiomyocytes were transfected with Ad-Metrnβ to overexpress Metrnβ, before being exposed to hypoxia to induce ischaemic injury. Apoptosis was determined using TUNEL staining and caspase 3 activity. Cell inflammation was detected using ELISA assays for pro-inflammatory factors. Autophagy was detected using LC3 staining and assessing the protein level of LC3II using western blotting. H9c2 cells were also treated with rapamycin to induce autophagy. It was revealed that Metrnβ expression was reduced in both mouse serum and heart tissue 2 weeks post-MI. Metrnβ overexpression using AAV9-Metrnβ delivery reduced the mortality rate, decreased the infarction size and reduced the extent of myocardial injury 2 weeks post-MI. Furthermore, Metrnβ overexpression inhibited cardiac hypertrophy, fibrosis and inflammation post-MI. In ischaemic H9c2 cells, Metrnβ overexpression using adenovirus also reduced cell injury, cell death and inflammatory response. Metrnβ overexpression suppressed MI-induced autophagy . Following autophagy activation using rapamycin , the protective effects induced by Metrnβ were reversed. Taken together, these results indicated that Metrnβ could protect against cardiac dysfunction post-MI in mice by inhibiting autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140287 | PMC |
http://dx.doi.org/10.3892/etm.2024.12582 | DOI Listing |
Cardiovasc Toxicol
January 2025
The Second Department of Cardiovascular Medicine, Baoji People's Hospital, Baoji, China.
Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFMol Ther
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:
CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.
Eur Arch Otorhinolaryngol
January 2025
ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 FenYang Road, Shanghai, 200031, China.
Background: Vocal fold leukoplakia (VFL), a precancerous lesion of the larynx, is characterized by white plaques on the vocal fold mucous membrane. Currently, there are no reliable biomarkers to predict the recurrence and malignant transformation of VFL. Considering chondroitin sulfate proteoglycan 4 (CSPG4) as a biomarker for malignant tumors such as laryngeal squamous cell carcinoma (LSCC), we conducted this cohort study to evaluate the prognostic influence of CSPG4 expression on VFL patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!