Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Natural language processing tools are becoming increasingly adopted in multiple industries worldwide. They have shown promising results however their use in the field of surgery is under-recognised. Many trials have assessed these benefits in small settings with promising results before large scale adoption can be considered in surgery. This study aims to review the current research and insights into the potential for implementation of natural language processing tools into surgery.
Methods: A narrative review was conducted following a computer-assisted literature search on Medline, EMBASE and Google Scholar databases. Papers related to natural language processing tools and consideration into their use for surgery were considered.
Results: Current applications of natural language processing tools within surgery are limited. From the literature, there is evidence of potential improvement in surgical capability and service delivery, such as through the use of these technologies to streamline processes including surgical triaging, data collection and auditing, surgical communication and documentation. Additionally, there is potential to extend these capabilities to surgical academia to improve processes in surgical research and allow innovation in the development of educational resources. Despite these outcomes, the evidence to support these findings are challenged by small sample sizes with limited applicability to broader settings.
Conclusion: With the increasing adoption of natural language processing technology, such as in popular forms like ChatGPT, there has been increasing research in the use of these tools within surgery to improve surgical workflow and efficiency. This review highlights multifaceted applications of natural language processing within surgery, albeit with clear limitations due to the infancy of the infrastructure available to leverage these technologies. There remains room for more rigorous research into broader capability of natural language processing technology within the field of surgery and the need for cross-sectoral collaboration to understand the ways in which these algorithms can best be integrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140056 | PMC |
http://dx.doi.org/10.3389/fsurg.2024.1403540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!