Outcome prediction in prolonged disorders of consciousness (DOC) remains challenging. This can result in either inappropriate withdrawal of treatment or unnecessary prolongation of treatment. Electroencephalography (EEG) is a cheap, portable, and non-invasive device with various opportunities for complex signal analysis. Computational EEG measures, such as EEG connectivity and network metrics, might be ideal candidates for the investigation of DOC, but their capacity in prognostication is still undisclosed. We conducted a meta-analysis aiming to compare the prognostic power of the widely used clinical scale, Coma Recovery Scale-Revised - CRS-R and EEG connectivity and network metrics. We found that the prognostic power of the CRS-R scale was moderate (AUC: 0.67 (0.60-0.75)), but EEG connectivity and network metrics predicted outcome with significantly (p = 0.0071) higher accuracy (AUC:0.78 (0.70-0.86)). We also estimated the prognostic capacity of EEG spectral power, which was not significantly (p = 0.3943) inferior to that of the EEG connectivity and graph-theory measures (AUC:0.75 (0.70-0.80)). Multivariate automated outcome prediction tools seemed to outperform clinical and EEG markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141356PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31277DOI Listing

Publication Analysis

Top Keywords

eeg connectivity
20
connectivity network
16
network metrics
12
eeg
9
disorders consciousness
8
outcome prediction
8
prognostic power
8
network
4
network analyses
4
analyses predict
4

Similar Publications

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Dublin 2, Ireland.

Background: Amyotrophic lateral sclerosis (ALS) shares pathological and genetic underpinnings with frontotemporal dementia (FTD). ALS manifests with diverse symptoms, including progressive neuro-motor degeneration, muscle weakness, but also cognitive-behavioural changes in up to half of the cases. Resting-state EEG measures, particularly spectral power and functional connectivity, have been instrumental for discerning abnormal motor and cognitive network function in ALS [1]-[3].

View Article and Find Full Text PDF

Background: Altered neuronal timing and synchrony are biomarkers for Alzheimer's disease (AD) and correlate with memory impairments. Electrical stimulation of the fornix, the main fibre bundle connecting the hippocampus to the septum, has emerged as a potential intervention to restore network synchrony and memory performance in human AD and mouse models. However, electrical stimulation is non-specific and may partially explain why fornix stimulation in AD patients has yielded mixed results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!